Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol Methods ; 247(1-2): 25-34, 2001 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11150534

RESUMO

We have developed monoclonal antibody 5109 against a unique highly acidic sequence in type II collagen. When paired with previously reported monoclonal antibody 9A4, 5109 can be used as the capture antibody in an ELISA assay for the neoepitope generated by collagenase-cleavage of type II collagen. The assay detects the sequence ZGlyGluX(759)GlyAspAspGlyProSerGlyAlaGluGlyProX(771)GlyProGlnGly(775) where Z is a variable length polypeptide, X is proline or hydroxyproline, and Gly(775) corresponds to C-terminal amino acid of the 3/4 piece after collagenase cleavage. Antibody 5109 detects the first and 9A4 the second underlined sequence. Antibody 5109 recognizes its epitope with a K=1.2x10(-8) M independently of hydroxylation of X(759). When X(771) is proline, the sequence is 90x more sensitively detected by this ELISA than when it is hydroxyproline. Type II collagen of human articular cartilage was fragmented by cyanogen bromide (CNBr) and trypsin. The immunoreactive fragment was captured with 5109 and sequenced. Proline(771) averaged 81% hydroxylated. Other 3rd position prolines were >97% hydroxylated. In urine of control individuals of 50-70 years of age, we failed to detect the presence of the collagen fragment in a majority (8/10) of specimens. The two controls with measurable levels averaged 123 pM. In a similar age cohort of osteoarthritic patients, the majority (9/10) showed measurable values of urinary collagen fragments averaging 312 pM. This assay can be used for monitoring type II collagen metabolism in patients with osteoarthritis.


Assuntos
Colágeno/análise , Colagenases , Epitopos de Linfócito B/imunologia , Idoso , Sequência de Aminoácidos , Animais , Cartilagem Articular/química , Cartilagem Articular/patologia , Colágeno/imunologia , Colagenases/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Hidroxiprolina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Dados de Sequência Molecular , Osteoartrite/imunologia , Osteoartrite/urina , Prolina/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Células Tumorais Cultivadas
3.
J Biol Chem ; 271(12): 7104-12, 1996 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-8636145

RESUMO

The experiments described in this report reconcile some of the apparent differences in isoform-specific kinetics of the Na,K-ATPase reported in earlier studies. Thus, tissue-specific differences in Na+ and K+ activation kinetics of Na,K-ATPase activity of the same species (rat) were observed when the same isoform was assayed in different tissues or cells. In the case of alpha1, alpha1-transfected HeLa cell, rat kidney, and axolemma membranes were compared. For alpha3, the ouabain-insensitive alpha3*-transfected HeLa cell (cf. Jewell, E. A., and Lingrel, J. B. (1991) J. Biol. Chem. 266, 16925-16930), pineal gland, and axolemma (mainly alpha3) membranes were compared. The order of apparent affinities for Na+ of alpha1 pumps was axolemma approximately rat alpha1-transfected HeLa > kidney, and for K+, kidney approximately alpha1-transfected HeLa > axolemma. For alpha3, the order of apparent affinities for Na+ was pineal gland approximately axolemma > alpha3*-transfected HeLa, and for K+, alpha3*-transfected HeLa > axolemma approximately pineal gland. In addition, the differences in apparent affinities for Na+ of either kidney alpha1 or HeLa alpha3* as compared to the same isoform in other tissues were even greater when the K+ concentration was increased. A kinetic analysis of the apparent affinities for Na+ as a function of K+ concentration indicates that isoform-specific as well as tissue-specific differences are related to the apparent affinities for both Na+ and K+, the latter acting as a competitive inhibitor at cytoplasmic Na+ activation sites. Although the nature of the tissue-specific modulation of K+/Na+ antagonism remains unknown, an analysis of the nature of the beta isoform associated with alpha1 or alpha3 using isoform-specific immunoprecipitation indicates that the presence of distinct beta subunits does not account for differences of alpha1 of kidney, axolemma, and HeLa, and of alpha3 of axolemma and HeLa; in both instances beta1 is the predominant beta isoform present or associated with either alpha1 or alpha3. However, a kinetic difference in K+/Na+ antagonism due to distinct betas may apply to alpha3 of axolemma (alpha3beta1) and pineal gland ( alpha3beta2).


Assuntos
Isoenzimas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Sítios de Ligação , Cátions , Citoplasma/metabolismo , Ativação Enzimática , Células HeLa , Humanos , Rim/enzimologia , Cinética , Glândula Pineal/enzimologia , Potássio/metabolismo , Ratos , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...