Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39356573

RESUMO

Covalent labeling methods coupled to mass spectrometry have emerged in recent years for studying the higher order structure of proteins. Quantifying the extent of modification of proteins in multiple states (i.e., ligand free vs ligand-bound) can provide information on protein interaction sites and regions of conformational change. Though there are several software platforms that are used to quantify the extent of modification, the process can still be time-consuming, particularly for proteome-wide studies. Here, we present an open-source software for quantitation called Covalent labeling Automated Data Analysis Platform for high Throughput in R (coADAPTr). coADAPTr tackles the need for more efficient data analysis in covalent labeling mass spectrometry for techniques such as hydroxyl radical protein footprinting (HRPF). Traditional methods like Excel's Power Pivot (PP) are cumbersome and time-intensive, posing challenges for large-scale analyses. coADAPTr simplifies analysis by mimicking the functions used in the previous quantitation platform using PowerPivot in Microsoft Excel but with fewer steps, offering proteome-wide insights with enhanced graphical interpretations. Several features have been added to improve the fidelity and throughput compared to those of PowerPivot. These include filters to remove any duplicate data and the use of the arithmetic mean rather than the geometric mean for quantitation of the extent of modification. Validation studies confirm coADAPTr's accuracy and efficiency while processing data up to 200 times faster than conventional methods. Its open-source design and user-friendly interface make it accessible for researchers exploring intricate biological phenomena via HRPF and other covalent labeling MS methods. coADAPTr marks a significant leap in structural proteomics, providing a versatile and efficient platform for data interpretation. Its potential to transform the field lies in its seamless handling of proteome-wide data analyses, empowering researchers with a robust tool for deciphering complex structural biology data.

2.
Mol Cell Proteomics ; : 100841, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307423

RESUMO

Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight into cellular compositions and interactions in healthy and diseased tissues. Proteome-scale tissue mapping, which aims to unbiasedly visualize all the proteins in a whole tissue section or region of interest, has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits significant technical challenges in both protein coverage and analytical throughput. Since many of these existing challenges are associated with mass spectrometry-based protein identification and quantification, we performed a detailed benchmarking study of three protein quantification methods for spatial proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method provided the deepest coverages of ∼3500 proteins at a spatial resolution of 50 µm and the highest quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 pixels per day. The evaluation also indicates both label-free and TMT-MS2 provide robust protein quantifications in identifying differentially abundant proteins and spatially co-variable clusters. In the study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables the identification of protein markers specific to different cell types, but more importantly, it also reveals unknown or hidden protein patterns by spatial co-expression analysis.

3.
J Proteome Res ; 23(10): 4303-4315, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39254081

RESUMO

The FragPipe computational proteomics platform is gaining widespread popularity among the proteomics research community because of its fast processing speed and user-friendly graphical interface. Although FragPipe produces well-formatted output tables that are ready for analysis, there is still a need for an easy-to-use and user-friendly downstream statistical analysis and visualization tool. FragPipe-Analyst addresses this need by providing an R shiny web server to assist FragPipe users in conducting downstream analyses of the resulting quantitative proteomics data. It supports major quantification workflows, including label-free quantification, tandem mass tags, and data-independent acquisition. FragPipe-Analyst offers a range of useful functionalities, such as various missing value imputation options, data quality control, unsupervised clustering, differential expression (DE) analysis using Limma, and gene ontology and pathway enrichment analysis using Enrichr. To support advanced analysis and customized visualizations, we also developed FragPipeAnalystR, an R package encompassing all FragPipe-Analyst functionalities that is extended to support site-specific analysis of post-translational modifications (PTMs). FragPipe-Analyst and FragPipeAnalystR are both open-source and freely available.


Assuntos
Proteômica , Software , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos , Interface Usuário-Computador , Biologia Computacional/métodos , Humanos , Fluxo de Trabalho
4.
Cell Death Differ ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349971

RESUMO

The integrated stress response (ISR) regulates cell fate during conditions of stress by leveraging the cell's capacity to endure sustainable and efficient adaptive stress responses. Protein phosphatase 2A (PP2A) activity modulation has been shown to be successful in achieving both therapeutic efficacy and safety across various cancer models. However, the molecular mechanisms driving its selective antitumor effects remain unclear. Here, we show for the first time that ISR plasticity relies on PP2A activation to regulate drug response and dictate cellular survival under conditions of chronic stress. We demonstrate that genetic and chemical modulation of the PP2A leads to chronic proteolytic stress and triggers an ISR to dictate whether the cell lives or dies. More specifically, we uncovered that the PP2A-TFE3-ATF4 pathway governs ISR cell plasticity during endoplasmic reticular and cellular stress independent of the unfolded protein response. We further show that normal cells reprogram their genetic signatures to undergo ISR-mediated adaptation and homeostatic recovery thereby avoiding toxicity following PP2A-mediated stress. Conversely, oncogenic specific cytotoxicity induced by chemical modulation of PP2A is achieved by activating chronic and irreversible ISR in cancer cells. Our findings propose that a differential response to chemical modulation of PP2A is determined by intrinsic ISR plasticity, providing a novel biological vulnerability to selectively induce cancer cell death and improve targeted therapeutic efficacy.

5.
bioRxiv ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39211273

RESUMO

Plasminogen activator inhibitor-1 (PAI-1) has been previously shown to promote lung fibrosis via a mechanism that requires an intact vitronectin (VTN) binding site. In the present study, employing two distinct murine fibrosis models, we find that VTN is not required for PAI-1 to drive lung scarring. This result suggested the existence of a previously unrecognized profibrotic PAI-1-protein interaction involving the VTN-binding site for PAI-1. Using an unbiased proteomic approach, we identified sortilin related receptor 1 (SorlA) as the most highly enriched PAI-1 interactor in the fibrosing lung. We next investigated the role of SorlA in pulmonary fibrosis and found that SorlA deficiency protected against lung scarring in a murine model. We further show that, while VTN deficiency does not influence fibrogenesis in the presence or absence of PAI-1, SorlA is required for PAI-1 to promote scarring. These results, together with data showing increased SorlA levels in human IPF lung tissue, support a novel mechanism through which the potent profibrotic mediator PAI-1 drives lung fibrosis and implicate SorlA as a new therapeutic target in IPF treatment.

6.
Cancer Res ; 84(19): 3235-3249, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024552

RESUMO

Metaplastic breast carcinomas (mBrCA) are a highly aggressive subtype of triple-negative breast cancer with histologic evidence of epithelial-to-mesenchymal transition and aberrant differentiation. Inactivation of the tumor suppressor gene cellular communication network factor 6 (CCN6; also known as Wnt1-induced secreted protein 3) is a feature of mBrCAs, and mice with conditional inactivation of Ccn6 in mammary epithelium (Ccn6-KO) develop spindle mBrCAs with epithelial-to-mesenchymal transition. Elucidation of the precise mechanistic details of how CCN6 acts as a tumor suppressor in mBrCA could help identify improved treatment strategies. In this study, we showed that CCN6 interacts with the Wnt receptor FZD8 and coreceptor LRP6 on mBrCA cells to antagonize Wnt-induced activation of ß-catenin/TCF-mediated transcription. The histone methyltransferase EZH2 was identified as a ß-catenin/TCF transcriptional target in Ccn6-KO mBrCA cells. Inhibiting Wnt/ß-catenin/TCF signaling in Ccn6-KO mBrCA cells led to reduced EZH2 expression, decreased histone H3 lysine 27 trimethylation, and deregulation of specific target genes. Pharmacologic inhibition of EZH2 reduced growth and metastasis of Ccn6-KO mBrCA mammary tumors in vivo. Low CCN6 is significantly associated with activated ß-catenin and high EZH2 in human spindle mBrCAs compared with other subtypes. Collectively, these findings establish CCN6 as a key negative regulator of a ß-catenin/TCF/EZH2 axis and highlight the inhibition of ß-catenin or EZH2 as a potential therapeutic approach for patients with spindle mBrCAs. Significance: CCN6 deficiency drives metaplastic breast carcinoma growth and metastasis by increasing Wnt/ß-catenin activation to upregulate EZH2, identifying EZH2 inhibition as a mechanistically guided treatment strategy for this deadly form of breast cancer.


Assuntos
Proteínas de Sinalização Intercelular CCN , Proteína Potenciadora do Homólogo 2 de Zeste , Transição Epitelial-Mesenquimal , Via de Sinalização Wnt , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Humanos , Feminino , Animais , Camundongos , Proteínas de Sinalização Intercelular CCN/metabolismo , Proteínas de Sinalização Intercelular CCN/genética , Linhagem Celular Tumoral , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , beta Catenina/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Metaplasia/patologia , Regulação Neoplásica da Expressão Gênica
7.
Mol Cell Proteomics ; 23(9): 100814, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029587

RESUMO

Protein tandem mass spectrometry (MS/MS) often generates sequence-informative fragments from backbone bond cleavages near the termini. This lack of fragmentation in the protein interior is particularly apparent in native top-down mass spectrometry (MS). Improved sequence coverage, critical for reliable annotation of posttranslational modifications and sequence variants, may be obtained from internal fragments generated by multiple backbone cleavage events. However, internal fragment assignments can be error prone due to isomeric/isobaric fragments from different parts of a protein sequence. Also, internal fragment generation propensity depends on the chosen MS/MS activation strategy. Here, we examine internal fragment formation in electron capture dissociation (ECD) and electron transfer dissociation (ETD) following native and denaturing MS, as well as LC/MS of several proteins. Experiments were undertaken on multiple instruments, including quadrupole time-of-flight, Orbitrap, and high-field Fourier-transform ion cyclotron resonance (FT-ICR) across four laboratories. ECD was performed at both ultrahigh vacuum and at similar pressure to ETD conditions. Two complementary software packages were used for data analysis. When feasible, ETD-higher energy collision dissociation MS3 was performed to validate/refute potential internal fragment assignments, including differentiating MS3 fragmentation behavior of radical versus even-electron primary fragments. We show that, under typical operating conditions, internal fragments cannot be confidently assigned in ECD or ETD. On the other hand, such fragments, along with some b-type terminal fragments (not typically observed in ECD/ETD spectra) appear at atypical ECD operating conditions, suggesting they originate from a separate ion-electron activation process. Furthermore, atypical fragment ion types, e.g., x ions, are observed at such conditions as well as upon EThcD, presumably due to vibrational activation of radical z-type ions.


Assuntos
Elétrons , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Software , Cromatografia Líquida , Proteínas/química , Fragmentos de Peptídeos/química , Espectrometria de Massas/métodos , Análise de Fourier
8.
J Proteomics ; 305: 105246, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964537

RESUMO

The 2023 European Bioinformatics Community for Mass Spectrometry (EuBIC-MS) Developers Meeting was held from January 15th to January 20th, 2023, in Congressi Stefano Franscin at Monte Verità in Ticino, Switzerland. The participants were scientists and developers working in computational mass spectrometry (MS), metabolomics, and proteomics. The 5-day program was split between introductory keynote lectures and parallel hackathon sessions focusing on "Artificial Intelligence in proteomics" to stimulate future directions in the MS-driven omics areas. During the latter, the participants developed bioinformatics tools and resources addressing outstanding needs in the community. The hackathons allowed less experienced participants to learn from more advanced computational MS experts and actively contribute to highly relevant research projects. We successfully produced several new tools applicable to the proteomics community by improving data analysis and facilitating future research.


Assuntos
Espectrometria de Massas , Proteômica , Proteômica/métodos , Humanos , Espectrometria de Massas/métodos , Biologia Computacional/métodos , Metabolômica/métodos , Inteligência Artificial
9.
Sci Transl Med ; 16(750): eadh0185, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838133

RESUMO

Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring better understanding of pathophysiology and new therapeutic approaches. Here, we applied high-throughput tandem mass spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography-mass spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the host response in sepsis, including changes over time, and identified features relating to etiology, clinical phenotypes (including organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis.


Assuntos
Proteoma , Sepse , Humanos , Sepse/sangue , Proteoma/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteômica/métodos , Masculino , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Feminino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/métodos
10.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854051

RESUMO

Data-independent acquisition (DIA) has become a widely used strategy for peptide and protein quantification in mass spectrometry-based proteomics studies. The integration of ion mobility separation into DIA analysis, such as the diaPASEF technology available on Bruker's timsTOF platform, further improves the quantification accuracy and protein depth achievable using DIA. We introduce diaTracer, a new spectrum-centric computational tool optimized for diaPASEF data. diaTracer performs three-dimensional (m/z, retention time, ion mobility) peak tracing and feature detection to generate precursor-resolved "pseudo-MS/MS" spectra, facilitating direct ("spectral-library free") peptide identification and quantification from diaPASEF data. diaTracer is available as a stand-alone tool and is fully integrated into the widely used FragPipe computational platform. We demonstrate the performance of diaTracer and FragPipe using diaPASEF data from cerebrospinal fluid (CSF) and plasma samples, data from phosphoproteomics and HLA immunopeptidomics experiments, and low-input data from a spatial proteomics study. We also show that diaTracer enables unrestricted identification of post-translational modifications from diaPASEF data using open/mass offset searches.

11.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895358

RESUMO

Recent developments in machine-learning (ML) and deep-learning (DL) have immense potential for applications in proteomics, such as generating spectral libraries, improving peptide identification, and optimizing targeted acquisition modes. Although new ML/DL models for various applications and peptide properties are frequently published, the rate at which these models are adopted by the community is slow, which is mostly due to technical challenges. We believe that, for the community to make better use of state-of-the-art models, more attention should be spent on making models easy to use and accessible by the community. To facilitate this, we developed Koina, an open-source containerized, decentralized and online-accessible high-performance prediction service that enables ML/DL model usage in any pipeline. Using the widely used FragPipe computational platform as example, we show how Koina can be easily integrated with existing proteomics software tools and how these integrations improve data analysis.

12.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895283

RESUMO

Proteotoxicity is a contributor to the development of type 2 diabetes (T2D), but it is unknown whether protein misfolding in T2D is generalized or has special features. Here, we report a robust accumulation of misfolded proteins within the mitochondria of human pancreatic islets in T2D and elucidate its impact on ß cell viability. Surprisingly, quantitative proteomics studies of protein aggregates reveal that human islets from donors with T2D have a signature more closely resembling mitochondrial rather than ER protein misfolding. The matrix protease LonP1 and its chaperone partner mtHSP70 were among the proteins enriched in protein aggregates. Deletion of LONP1 in mice yields mitochondrial protein misfolding and reduced respiratory function, ultimately leading to ß cell apoptosis and hyperglycemia. Intriguingly, LONP1 gain of function ameliorates mitochondrial protein misfolding and restores human ß cell survival following glucolipotoxicity via a protease-independent effect requiring LONP1-mtHSP70 chaperone activity. Thus, LONP1 promotes ß cell survival and prevents hyperglycemia by facilitating mitochondrial protein folding. These observations may open novel insights into the nature of impaired proteostasis on ß cell loss in the pathogenesis of T2D that could be considered as future therapeutic targets.

13.
Anal Bioanal Chem ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877149

RESUMO

Identification of O-glycopeptides from tandem mass spectrometry data is complicated by the near complete dissociation of O-glycans from the peptide during collisional activation and by the combinatorial explosion of possible glycoforms when glycans are retained intact in electron-based activation. The recent O-Pair search method provides an elegant solution to these problems, using a collisional activation scan to identify the peptide sequence and total glycan mass, and a follow-up electron-based activation scan to localize the glycosite(s) using a graph-based algorithm in a reduced search space. Our previous O-glycoproteomics methods with MSFragger-Glyco allowed for extremely fast and sensitive identification of O-glycopeptides from collisional activation data but had limited support for site localization of glycans and quantification of glycopeptides. Here, we report an improved pipeline for O-glycoproteomics analysis that provides proteome-wide, site-specific, quantitative results by incorporating the O-Pair method as a module within FragPipe. In addition to improved search speed and sensitivity, we add flexible options for oxonium ion-based filtering of glycans and support for a variety of MS acquisition methods and provide a comparison between all software tools currently capable of O-glycosite localization in proteome-wide searches.

14.
Nat Protoc ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769142

RESUMO

Technological advances in mass spectrometry and proteomics have made it possible to perform larger-scale and more-complex experiments. The volume and complexity of the resulting data create major challenges for downstream analysis. In particular, next-generation data-independent acquisition (DIA) experiments enable wider proteome coverage than more traditional targeted approaches but require computational workflows that can manage much larger datasets and identify peptide sequences from complex and overlapping spectral features. Data-processing tools such as FragPipe, DIA-NN and Spectronaut have undergone substantial improvements to process spectral features in a reasonable time. Statistical analysis tools are needed to draw meaningful comparisons between experimental samples, but these tools were also originally designed with smaller datasets in mind. This protocol describes an updated version of MSstats that has been adapted to be compatible with large-scale DIA experiments. A very large DIA experiment, processed with FragPipe, is used as an example to demonstrate different MSstats workflows. The choice of workflow depends on the user's computational resources. For datasets that are too large to fit into a standard computer's memory, we demonstrate the use of MSstatsBig, a companion R package to MSstats. The protocol also highlights key decisions that have a major effect on both the results and the processing time of the analysis. The MSstats processing can be expected to take 1-3 h depending on the usage of MSstatsBig. The protocol can be run in the point-and-click graphical user interface MSstatsShiny or implemented with minimal coding expertise in R.

16.
Res Sq ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585734

RESUMO

The integrated stress response (ISR) regulates cell fate during conditions of stress by leveraging the cell's capacity to endure sustainable and efficient adaptive stress responses. Protein phosphatase 2A (PP2A) activity modulation has been shown to be successful in achieving both therapeutic efficacy and safety across various cancer models; however, the molecular mechanisms driving its selective antitumor effects remain unclear. Here, we show for the first time that ISR plasticity relies on PP2A activation to regulate drug response and dictate cellular fate under conditions of chronic stress. We demonstrate that genetic and chemical modulation of the PP2A leads to chronic proteolytic stress and triggers an ISR to dictate cell fate. More specifically, we uncovered that the PP2A-TFE3-ATF4 pathway governs ISR cell plasticity during endoplasmic reticular and cellular stress independent of the unfolded protein response. We further show that normal cells reprogram their genetic signatures to undergo ISR-mediated adaptation and homeostatic recovery thereby successfully avoiding toxicity following PP2A-mediated stress. Conversely, oncogenic specific cytotoxicity induced by chemical modulation of PP2A is achieved by activating chronic and irreversible ISR in cancer cells. Our findings propose that a differential response to chemical modulation of PP2A is determined by intrinsic ISR plasticity, providing a novel biological vulnerability to selectively induce cancer cell death and improve targeted therapeutic efficacy.

17.
bioRxiv ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38496650

RESUMO

The FragPipe computational proteomics platform is gaining widespread popularity among the proteomics research community because of its fast processing speed and user-friendly graphical interface. Although FragPipe produces well-formatted output tables that are ready for analysis, there is still a need for an easy-to-use and user-friendly downstream statistical analysis and visualization tool. FragPipe-Analyst addresses this need by providing an R shiny web server to assist FragPipe users in conducting downstream analyses of the resulting quantitative proteomics data. It supports major quantification workflows including label-free quantification, tandem mass tags, and data-independent acquisition. FragPipe-Analyst offers a range of useful functionalities, such as various missing value imputation options, data quality control, unsupervised clustering, differential expression (DE) analysis using Limma, and gene ontology and pathway enrichment analysis using Enrichr. To support advanced analysis and customized visualizations, we also developed FragPipeAnalystR, an R package encompassing all FragPipe-Analyst functionalities that is extended to support site-specific analysis of post-translational modifications (PTMs). FragPipe-Analyst and FragPipeAnalystR are both open-source and freely available.

18.
bioRxiv ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38496682

RESUMO

Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight into cellular compositions and interactions in healthy and diseased tissues. Proteome-scale tissue mapping, which aims to unbiasedly visualize all the proteins in a whole tissue section or region of interest, has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits significant technical challenges in both protein coverage and analytical throughput. Since many of these existing challenges are associated with mass spectrometry-based protein identification and quantification, we performed a detailed benchmarking study of three protein quantification methods for spatial proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method provided the deepest coverages of ~3500 proteins at a spatial resolution of 50 µm and the highest quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 pixels per day. The evaluation also indicates both label-free and TMT-MS2 provide robust protein quantifications in identifying differentially abundant proteins and spatially co-variable clusters. In the study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables the identification of protein markers specific to different cell types, but more importantly, it also reveals unknown or hidden protein patterns by spatial co-expression analysis.

19.
Nat Commun ; 15(1): 2357, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490980

RESUMO

Circular RNAs (circRNAs) are covalently closed non-coding RNAs lacking the 5' cap and the poly-A tail. Nevertheless, it has been demonstrated that certain circRNAs can undergo active translation. Therefore, aberrantly expressed circRNAs in human cancers could be an unexplored source of tumor-specific antigens, potentially mediating anti-tumor T cell responses. This study presents an immunopeptidomics workflow with a specific focus on generating a circRNA-specific protein fasta reference. The main goal of this workflow is to streamline the process of identifying and validating human leukocyte antigen (HLA) bound peptides potentially originating from circRNAs. We increase the analytical stringency of our workflow by retaining peptides identified independently by two mass spectrometry search engines and/or by applying a group-specific FDR for canonical-derived and circRNA-derived peptides. A subset of circRNA-derived peptides specifically encoded by the region spanning the back-splice junction (BSJ) are validated with targeted MS, and with direct Sanger sequencing of the respective source transcripts. Our workflow identifies 54 unique BSJ-spanning circRNA-derived peptides in the immunopeptidome of melanoma and lung cancer samples. Our approach enlarges the catalog of source proteins that can be explored for immunotherapy.


Assuntos
Peptídeos , RNA Circular , Humanos , RNA Circular/metabolismo , RNA Mensageiro , Antígenos de Histocompatibilidade Classe I
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA