Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1858(9): 2191-2198, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27349733

RESUMO

Non-enzymatic lipid peroxidation may change biomembrane structure and function. Here, we employed molecular dynamics simulations to study the effects of either phospholipid or cholesterol peroxidation individually, as well as the combined peroxidation of both components. When lipids were peroxidized, the generated OOH groups migrated to the membrane surface and engaged in H-bonds with each other and the phospholipid carbonyl ester groups. It caused the sn-2 acyl chains of phospholipid hydroperoxides to bend and the whole sterol backbone of cholesterol hydroperoxides to tilt. When phospholipids were kept intact, peroxidation of the sterol backbone led to a partial degradation of its condensing and ordering properties, independently of the position and isomerism of the OOH substitution. However, even in massively peroxidized membranes in which all phospholipids and cholesterol were peroxidized, the condensing and ordering properties of the sterol backbone were still significant. The possible implications for the formation of membrane lateral domains were discussed. Cholesterol peroxyl radicals were also investigated and we found that the OO groups did not migrate to the headgroups region.


Assuntos
Colesterol/química , Peroxidação de Lipídeos , Membranas Artificiais , Simulação de Dinâmica Molecular , Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...