Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Caries Res ; : 1-13, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38763135

RESUMO

INTRODUCTION: Statherin-derived peptide (StatpSpS) has shown promise against erosive tooth wear. To elucidate its interaction with the hydroxyapatite (HAP) surface, the mechanism related to adsorption of this peptide with HAP was investigated through nanosecond-long all-atom molecular dynamics simulations. METHODS: StatpSpS was positioned parallel to the HAP surface in 2 orientations: 1 - neutral and negative residues facing the surface and 2 - positive residues facing the surface. A system containing StatpSpS without HAP was also simulated as control. In the case of systems with HAP, both partially restrained surface and unrestrained surface were constructed. Structural analysis, interaction pattern, and binding-free energy were calculated. RESULTS: In the peptide system without the HAP, there were some conformational changes during the simulation. In the presence of the surface, only moderate changes were observed. Many residues exhibited short and stable distances to the surface, indicating strong interaction. Specially, the residues ASP1 and SER2 have an important role to anchor the peptide to the surface, with positively charged residues, mainly arginine, playing a major role in the further stabilization of the peptide in an extended conformation, with close contacts to the HAP surface. CONCLUSION: The interaction between StatpSpS and HAP is strong, and the negative charged residues are important to the anchoring of the peptide in the surface, but after the initial placement the peptide rearranges itself to maximize the interactions between positive charged residues.

2.
Pharmaceutics ; 15(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36839698

RESUMO

Cu(II) complexes bearing NNO-donor Schiff base ligands (2a, b) have been synthesized and characterized. The single crystal X-ray analysis of the 2a complex revealed that a mononuclear and a dinuclear complex co-crystallize in the solid state. The electronic structures of the complexes are optimized by Density Functional Theory (DFT) calculations. The monomeric nature of 2a and 2b species is maintained in solution. Antioxidant activities of the ligands (1a, b) and Cu(II) complexes (2a, b) were determined by in vitro assays such as 1,1-diphenyl-2-picrylhydrazyl free radicals (DPPH.) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radicals (ABTS+). Our results demonstrated that 2a showed better antioxidant activity. MTT assays were performed to assess the toxicity of ligands and Cu(II) complexes in V79 cells. The antiproliferative activity of compounds was tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and SW620 (colorectal carcinoma) and on MRC-5 (normal lung fibroblast). All compounds showed high cytotoxicity in the all-cell lines but showed no selectivity for tumor cell lines. Antiproliferative activity by clonogenic assay 2b showed a more significant inhibitory effect on the MCF-7 cell lines than on MRC-5. DNA damage for the 2b compound at 10 µM concentration was about three times higher in MCF-7 cells than in MRC-5 cells.

3.
J Biomol Struct Dyn ; 41(7): 3110-3128, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35594172

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has reached by February 2022 more than 380 million cases and 5.5 million deaths worldwide since its beginning in late 2019, leading to enhanced concern in the scientific community and the general population. One of the most important pieces of this host-pathogen interaction is the spike protein, which binds to the hACE2 cell receptor, mediates the membrane fusion and is the major target of neutralizing antibodies against SARS-CoV-2. The multiple amino acid substitutions observed in this region, specially in RBD have enhanced the hACE2 binding affinity and led to several modifications in the mechanisms of SARS-CoV-2 pathogenesis, improving the viral fitness and/or promoting immune evasion, with potential impact in the vaccine development. In this work, we identified 48 sites under selective pressures, 17 of them with the strongest evidence by the HyPhy tests, including VOC related mutation sites 138, 142, 222, 262, 484, 681, and 845, among others. The coevolutionary analysis identified 28 sites found not to be conditionally independent, such as E484K-N501Y. The molecular dynamics and free energy estimates showed the structural stabilizing effect and the higher impact of E484K for enhanced binding affinity between the spike RBD and hACE2 in P.1 and P.2 lineages (specially with L452V). Structural changes were also identified in the hACE molecule when interacting with B.1.1.7 RDB. Despite some destabilizing substitutions, a stabilizing effect was identified for the majority of the positively selected mutations.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus , Brasil , Pandemias , Evolução Molecular , Mutação , Glicoproteínas
4.
J Mol Model ; 27(2): 46, 2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33484339

RESUMO

Polyurethanes (PU) are multifunctional polymers, used in automotive industry, in coatings, rigid and flexible foams, and also in biomimetic materials. In the same way as all plastic waste, the incorrect disposal of these materials leads to the accumulation of polyurethanes in the environment. To reduce the amount of waste as well as add value to degradation products, bioremediation methods have been studied for waste management of PU. Enzymes of the hydrolases class have been experimentally tested for enzymatic degradation of PU, with very promising results. In this work, two enzymes that can degrade polyurethanes were studied by molecular dynamics simulations: a protease and an esterase, both from Pseudomonas. From molecular dynamics simulations analysis, it was observed the stability of the structures, both in the simulations of the free enzymes and in the simulations of the complexes with a PU monomer. Hydrogen bonds were formed with the monomer and the enzymes throughout the simulation time, and the interaction free energy was found to be strongly negative, pointing to strong interactions in both cases.


Assuntos
Lipase/metabolismo , Modelos Moleculares , Poliuretanos/metabolismo , Pseudomonas/enzimologia , Estabilidade Enzimática , Ligação de Hidrogênio , Lipase/química , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Termodinâmica
5.
Chembiochem ; 22(5): 865-875, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33084150

RESUMO

The SARS-CoV-2 pandemic is the biggest health concern today, but until now there is no treatment. One possible drug target is the receptor binding domain (RBD) of the coronavirus' spike protein, which recognizes the human angiotensin-converting enzyme 2 (hACE2). Our in silico study discusses crucial structural and thermodynamic aspects of the interactions involving RBDs from the SARS-CoV and SARS-CoV-2 with the hACE2. Molecular docking and molecular dynamics simulations explain why the chemical affinity of the new SARS-CoV-2 for hACE2 is much higher than in the case of SARS-CoV, revealing an intricate pattern of hydrogen bonds and hydrophobic interactions and estimating a free energy of binding, which is consistently much more negative in the case of SARS-CoV-2. This work presents a chemical reason for the difficulty in treating the SARS-CoV-2 virus with drugs targeting its spike protein and helps to explain its infectiousness.


Assuntos
Enzima de Conversão de Angiotensina 2/química , COVID-19 , SARS-CoV-2/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
J Mol Graph Model ; 89: 82-95, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30877946

RESUMO

The global production of plastics increases every year, because these materials are widely used in several segments of modern life. Polyurethanes are a very important class of polymers, used in many areas of everyday life, from automotive equipments to mattresses. The waste management usually involves accumulation in landfills, incineration, and reuse processes. However, bioremediation processes are being increasingly tested, due to the efficiency of enzymes in the degradation, besides adding value to the generated waste. Several experimental tests indicate that hydrolases, such as proteases, ureases, and esterases, are able to degrade polyurethanes. In this work, the three-dimensional structure of enzymes that are experimentally know to degrade polyurethanes were obtained for the first time, by the technique of homology modeling. The theoretical models showed good stereochemical quality and through molecular dynamics simulations analysis it was observed the stability of the structures. The molecular docking results indicated that all ligands, monomers of polyurethane, showed favorable interactions with the modeled enzymes.


Assuntos
Amidoidrolases/química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Poliuretanos/química , Sítios de Ligação , Catálise , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Conformação Proteica , Estereoisomerismo
7.
J Comput Chem ; 39(24): 2000-2011, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30238474

RESUMO

Prions are proteins that cause a group of invariably fatal neurodegenerative diseases, one of the most known being bovine spongiform encephalopathy. The three-dimensional structure of PrPSc , the altered isoform of the prion protein, has not been fully elucidated yet, and studies on prion conversion mechanisms must rely on hypothetical ß-rich structures. Experimental and computational studies indicate that the use of low pH is capable to produce a gain of ß-structure content in the otherwise unstructured N-terminal region. These in silico studies have used different PrP fragments from distinct organisms, and with different lengths and simulation protocols, making it difficult to identify the influence of the force fields on the formation of such structures. Here, we performed a systematic study of the influence of six well-established force fields (GROMOS96 53a6, GROMOS96 43a1, AMBER99SB, AMBER99SB-ILDN, CHARMM27, and OPLS-AA/L) on the process of structural conversion of the Syrian hamster cellular prion protein simulated at acidic and neutral pH. From our analysis, we observe a strong dependence of the results with the different force fields employed. Additionally, only GROMOS96 53A6 and AMBER99SB force fields are capable to capture a high ß-sheet formation at acidic pH and adequately reproduce the neutral pH. In both cases, the ß-sheet elongation seems to be guided by the movement of the N-terminal tail toward the N-terminal of α-helix HB under acidic condition. These results comprise the most wide-ranging study to date correlating force fields to structural changes in the cellular prion protein. © 2018 Wiley Periodicals, Inc.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Priônicas/química , Animais , Bovinos , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína
8.
Bioorg Med Chem ; 19(24): 7416-24, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22071524

RESUMO

Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic and exogenous amines and its inhibitors have therapeutic value for several conditions including affective disorders, stroke, neurodegenerative diseases and aging. The discovery of 2,3,6-trimethyl-1,4-naphthoquinone (TMN) as a nonselective and reversible inhibitor of MAO, has suggested 1,4-naphthoquinone (1,4-NQ) as a potential scaffold for designing new MAO inhibitors. Combining molecular modeling tools and biochemical assays we evaluate the kinetic and molecular details of the inhibition of human MAO by 1,4-NQ, comparing it with TMN and menadione. Menadione (2-methyl-1,4-naphthoquinone) is a multitarget drug that acts as a precursor of vitamin K and an inducer of mitochondrial permeability transition. Herein we show that MAO-B was inhibited competitively by 1,4-NQ (K(i)=1.4 µM) whereas MAO-A was inhibited by non-competitive mechanism (K(i)=7.7 µM). Contrasting with TMN and 1,4-NQ, menadione exhibited a 60-fold selectivity for MAO-B (K(i)=0.4 µM) in comparison with MAO-A (K(i)=26 µM), which makes it as selective as rasagiline. Fluorescence and molecular modeling data indicated that these inhibitors interact with the flavin moiety at the active site of the enzyme. Additionally, docking studies suggest the phenyl side groups of Tyr407 and Tyr444 (for MAO-A) or Tyr398 and Tyr435 (for MAO-B) play an important role in the interaction of the enzyme with 1,4-NQ scaffold through forces of dispersion as verified for menadione, TMN and 1,4-NQ. Taken together, our findings reveal the molecular details of MAO inhibition by 1,4-NQ scaffold and show for the first time that menadione acts as a competitive and reversible inhibitor of human MAO.


Assuntos
Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Naftoquinonas/farmacologia , Vitamina K 3/farmacologia , Vitaminas/farmacologia , Animais , Humanos , Cinética , Modelos Moleculares , Monoaminoxidase/química , Naftoquinonas/química , Ligação Proteica , Vitamina K 3/química , Vitaminas/química
9.
J Mol Model ; 16(4): 725-35, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19816721

RESUMO

The regulatory properties of thrombin are derived predominantly from its capacity to produce different functional conformations. Functional studies have revealed that two antagonistic thrombin conformations exist in equilibrium: the fast (procoagulant) and slow (anticoagulant) forms. The mechanisms whereby thrombin activity is regulated by the binding of different effectors remain among the most enigmatic and controversial subjects in the field of protein function. In order to obtain more detailed information on the dynamic events originating from the interaction with the Na(+) effector and ligand binding at the active site and anion binding exosite 1 (ABE1), we carried out molecular dynamics simulations of thrombin in different bound states. The results indicated that Na(+) release results in a more closed conformation of thrombin, which can be compared to the slow form. The conformational changes induced by displacement of the sodium ion from the Na-binding site include: (1) distortion of the 220- and 186-loops that constitute the Na-binding site; (2) folding back of the Trp148 loop towards the body of the protein, (3) a 180 degrees rotation of the Asp189 side-chain, and (4) projection of the Trp60D loop toward the solvent accompanied by the rearrangement of the Trp215 side chain toward the 95-100 loop. Our findings correlate well with the known structural and recognition properties of the slow and fast forms of thrombin, and are in accordance with the hypothesis that there is communication between the diverse functional domains of thrombin. The theoretical models generated from our MD simulations complement and advance the structural information currently available, leading to a more detailed understanding of thrombin structure and function.


Assuntos
Trombina/química , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Sódio
10.
Curr Drug Targets ; 9(12): 1100-5, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19128221

RESUMO

Currently, in order to accelerate the process of drug development and also reduce costs, many of the experimental assays related to lead discovery and lead optimization processes are being replaced by computational, in silico, methods. In this context, the LIE (linear interaction energy) method has been used to calculate binding free energies for widely different compounds by averaging interaction energies obtained from molecular dynamics (MD) or Monte Carlo (MC) simulations. In particular, the combination of docking and affinity predictions with the LIE method can thus save valuable resources in lead discovery and optimization projects. This review presents a description of LIE methodology and some recent studies that illustrate the importance and utility of the method in the field of pharmaceutical research.


Assuntos
Descoberta de Drogas , Modelos Moleculares , Método de Monte Carlo , Mutação Puntual , Proteínas/química , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...