Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 190(11): 5779-87, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23630350

RESUMO

SerpinB2, a member of the serine protease inhibitor family, is expressed by macrophages and is significantly upregulated by inflammation. Recent studies implicated a role for SerpinB2 in the control of Th1 and Th2 immune responses, but the mechanisms of these effects are unknown. In this study, we used mice deficient in SerpinB2 (SerpinB2(-/-)) to investigate its role in the host response to the enteric nematode, Heligmosomoides bakeri. Nematode infection induced a STAT6-dependent increase in intestinal SerpinB2 expression. The H. bakeri-induced upregulation of IL-4 and IL-13 expression was attenuated in SerpinB2(-/-) mice coincident with an impaired worm clearance. In addition, lack of SerpinB2 in mice resulted in a loss of the H. bakeri-induced smooth muscle hypercontractility and a significant delay in infection-induced increase in mucosal permeability. Th2 immunity is generally linked to a CCL2-mediated increase in the infiltration of macrophages that develop into the alternatively activated phenotype (M2). In H. bakeri-infected SerpinB2(-/-) mice, there was an impaired infiltration and alternative activation of macrophages accompanied by a decrease in the intestinal CCL2 expression. Studies in macrophages isolated from SerpinB2(-/-) mice showed a reduced CCL2 expression, but normal M2 development, in response to stimulation of Th2 cytokines. These data demonstrate that the immune regulation of SerpinB2 expression plays a critical role in the development of Th2-mediated protective immunity against nematode infection by a mechanism involving CCL2 production and macrophage infiltration.


Assuntos
Mucosa Intestinal/metabolismo , Intestinos/imunologia , Infecções por Nematoides/imunologia , Infecções por Nematoides/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Animais , Citocinas/imunologia , Citocinas/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Intestinos/parasitologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Músculo Liso/metabolismo , Músculo Liso/parasitologia , Infecções por Nematoides/genética , Inibidor 2 de Ativador de Plasminogênio/deficiência , Inibidor 2 de Ativador de Plasminogênio/genética
2.
Inflamm Bowel Dis ; 18(7): 1303-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22081509

RESUMO

BACKGROUND: Matriptase is a membrane-anchored serine protease encoded by suppression of tumorigenicity-14 (ST14) that is required for epithelial barrier homeostasis. However, its functional role in inflammatory bowel disease (IBD) is unexplored. METHODS: Matriptase expression in control, Crohn's disease, and ulcerative colitis tissue specimens was studied by quantitative polymerase chain reaction (qPCR) and immunostaining. Matriptase function was investigated by subjecting St14 hypomorphic and control littermates to dextran sodium sulfate (DSS)-induced colitis and by siRNA silencing in cultured monolayers. Mice were analyzed for clinical, histological, molecular, and cellular effects. RESULTS: Matriptase protein and ST14 mRNA levels are significantly downregulated in inflamed colonic tissues from Crohn's disease and ulcerative colitis patients. Matriptase-deficient St14 hypomorphic mice administered DSS for 7 days followed by water without DSS for 3 days develop a severe colitis, with only 30% of the St14 hypomorphic mice surviving to day 14, compared with 100% of control littermates. Persistent colitis in surviving St14 hypomorphic mice was associated with sustained cytokine production, an inability to recover barrier integrity, and enhanced claudin-2 expression. Cytokines implicated in barrier disruption during IBD suppress matriptase expression in T84 epithelial monolayers and restoration of matriptase improves barrier integrity in the cytokine-perturbed monolayers. CONCLUSIONS: These data demonstrate a critical role for matriptase in restoring barrier function to injured intestinal mucosa during colitis, which is suppressed by excessive activation of the immune system. Strategies to enhance matriptase-mediated barrier recovery could be important for intervening in the cycle of inflammation associated with IBD.


Assuntos
Colite Ulcerativa/metabolismo , Colite/prevenção & controle , Doença de Crohn/metabolismo , Intestinos/enzimologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/fisiologia , Animais , Western Blotting , Colite/induzido quimicamente , Colite/patologia , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/enzimologia , Colo/patologia , Doença de Crohn/genética , Doença de Crohn/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Impedância Elétrica , Feminino , Humanos , Técnicas Imunoenzimáticas , Intestinos/lesões , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Endopeptidases/genética
3.
Biochem J ; 428(3): 325-46, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20507279

RESUMO

The serine proteases of the trypsin-like (S1) family play critical roles in many key biological processes including digestion, blood coagulation, and immunity. Members of this family contain N- or C-terminal domains that serve to tether the serine protease catalytic domain directly to the plasma membrane. These membrane-anchored serine proteases are proving to be key components of the cell machinery for activation of precursor molecules in the pericellular microenvironment, playing vital functions in the maintenance of homoeostasis. Substrates activated by membrane-anchored serine proteases include peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules and viral coat proteins. In addition, new insights into our understanding of the physiological functions of these proteases and their involvement in human pathology have come from animal models and patient studies. The present review discusses emerging evidence for the diversity of this fascinating group of membrane serine proteases as potent modifiers of the pericellular microenvironment through proteolytic processing of diverse substrates. We also discuss the functional consequences of the activities of these proteases on mammalian physiology and disease.


Assuntos
Membrana Celular/enzimologia , Serina Proteases/metabolismo , Animais , Humanos , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 107(9): 4200-5, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20142489

RESUMO

The intestinal epithelium serves as a major protective barrier between the mammalian host and the external environment. Here we show that the transmembrane serine protease matriptase plays a pivotol role in the formation and integrity of the intestinal epithelial barrier. St14 hypomorphic mice, which have a 100-fold reduction in intestinal matriptase mRNA levels, display a 35% reduction in intestinal transepithelial electrical resistance (TEER). Matriptase is expressed during intestinal epithelial differentiation and colocalizes with E-cadherin to apical junctional complexes (AJC) in differentiated polarized Caco-2 monolayers. Inhibition of matriptase activity using a specific peptide inhibitor or by knockdown of matriptase by siRNA disrupts the development of TEER in barrier-forming Caco-2 monolayers and increases paracellular permeability to macromolecular FITC-dextran. Loss of matriptase was associated with enhanced expression and incorporation of the permeability-associated, "leaky" tight junction protein claudin-2 at intercellular junctions. Knockdown of claudin-2 enhanced the development of TEER in matriptase-silenced Caco-2 monolayers, suggesting that the reduced barrier integrity was caused, at least in part, by an inability to regulate claudin-2 expression and incorporation into junctions. We find that matriptase enhances the rate of claudin-2 protein turnover, and that this is mediated indirectly through an atypical PKCzeta-dependent signaling pathway. These results support a key role for matriptase in regulating intestinal epithelial barrier competence, and suggest an intriguing link between pericellular serine protease activity and tight junction assembly in polarized epithelia.


Assuntos
Mucosa Intestinal/metabolismo , Serina Endopeptidases/metabolismo , Células CACO-2 , Membrana Celular/enzimologia , Proliferação de Células , Claudinas , Inativação Gênica , Humanos , Proteínas de Membrana/metabolismo , Permeabilidade , Proteína Quinase C/metabolismo , RNA Interferente Pequeno , Serina Endopeptidases/genética , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 106(39): 16799-804, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19805376

RESUMO

Increased intestinal permeability (IP) has emerged recently as a common underlying mechanism in the pathogenesis of allergic, inflammatory, and autoimmune diseases. The characterization of zonulin, the only physiological mediator known to regulate IP reversibly, has remained elusive. Through proteomic analysis of human sera, we have now identified human zonulin as the precursor for haptoglobin-2 (pre-HP2). Although mature HP is known to scavenge free hemoglobin (Hb) to inhibit its oxidative activity, no function has ever been ascribed to its uncleaved precursor form. We found that the single-chain zonulin contains an EGF-like motif that leads to transactivation of EGF receptor (EGFR) via proteinase-activated receptor 2 (PAR(2)) activation. Activation of these 2 receptors was coupled to increased IP. The siRNA-induced silencing of PAR(2) or the use of PAR(2)(-/-) mice prevented loss of barrier integrity. Proteolytic cleavage of zonulin into its alpha(2)- and beta-subunits neutralized its ability to both activate EGFR and increase IP. Quantitative gene expression revealed that zonulin is overexpressed in the intestinal mucosa of subjects with celiac disease. To our knowledge, this is the initial example of a molecule that exerts a biological activity in its precursor form that is distinct from the function of its mature form. Our results therefore characterize zonulin as a previously undescribed ligand that engages a key signalosome involved in the pathogenesis of human immune-mediated diseases that can be targeted for therapeutic interventions.


Assuntos
Toxina da Cólera/química , Haptoglobinas/química , Precursores de Proteínas/química , Junções Íntimas/metabolismo , Animais , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Haptoglobinas/genética , Haptoglobinas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Permeabilidade , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Biol Reprod ; 81(5): 921-32, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19571264

RESUMO

An estimated 25%-40% of infertile men have idiopathic infertility associated with deficient sperm numbers and quality. Here, we identify the membrane-anchored serine protease PRSS21, also known as testisin, to be a novel proteolytic factor that directs epididymal sperm cell maturation and sperm-fertilizing ability. PRSS21-deficient spermatozoa show decreased motility, angulated and curled tails, fragile necks, and dramatically increased susceptibility to decapitation. These defects reflect aberrant maturation during passage through the epididymis, because histological and electron microscopic structural analyses showed an increased tendency for curled and detached tails as spermatozoa transit from the corpus to the cauda epididymis. Cauda epididymal spermatozoa deficient in PRSS21 fail to mount a swelling response when exposed to hypotonic conditions, suggesting an impaired ability to respond to osmotic challenges facing maturing spermatozoa in the female reproductive tract. These data suggest that aberrant regulation of PRSS21 may underlie certain secondary male infertility syndromes, such as "easily decapitated" spermatozoa in humans.


Assuntos
Fertilização/fisiologia , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Maturação do Esperma/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/citologia , Animais , Western Blotting , Contagem de Células , Forma Celular , Sobrevivência Celular , Copulação/fisiologia , Feminino , Fertilização in vitro , Proteínas Ligadas por GPI , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Fosforilação , Serina Endopeptidases/genética , Espermatozoides/metabolismo , Coloração e Rotulagem
7.
Cancer Res ; 68(14): 5648-57, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18632617

RESUMO

The tumor suppressor retinoblastoma protein (Rb) plays a pivotal role in the regulation of cell proliferation and sensitivity to apoptosis through binding to E2F transcription factors. Loss of Rb in response to genotoxic stress or inflammatory cytokines can enhance cell death, in part, by eliminating Rb-mediated repression of proapoptotic gene transcription. Here we show that calpain cleavage of Rb facilitates Rb loss by proteasome degradation and that this may occur during tumor necrosis factor alpha-induced apoptosis. The cytoprotective, Rb-binding protein SerpinB2 (plasminogen activator inhibitor type 2) protects Rb from calpain cleavage, increasing Rb levels and enhancing cell survival. Chromatin immunoprecipitation assays show that the increased Rb levels selectively enhance Rb repression of proapoptotic gene transcription. This cytoprotective role of SerpinB2 is illustrated by reduced susceptibility of SerpinB2-deficient mice to multistage skin carcinogenesis, where Rb-dependent cell proliferation competes with apoptosis during initiation of papilloma development. These data identify SerpinB2 as a cell survival factor that modulates Rb repression of proapoptotic signal transduction and define a new posttranslational mechanism for selective regulation of the intracellular levels of Rb.


Assuntos
Calpaína/metabolismo , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Inibidor 2 de Ativador de Plasminogênio/fisiologia , Proteína do Retinoblastoma/metabolismo , Animais , Apoptose , Fibroblastos/metabolismo , Predisposição Genética para Doença , Células HeLa , Humanos , Células Jurkat , Camundongos , Inibidor 2 de Ativador de Plasminogênio/genética , Transdução de Sinais , Neoplasias Cutâneas/metabolismo
8.
Gastroenterology ; 135(1): 194-204.e3, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18485912

RESUMO

BACKGROUND & AIMS: Celiac disease is an immune-mediated enteropathy triggered by gliadin, a component of the grain protein gluten. Gliadin induces an MyD88-dependent zonulin release that leads to increased intestinal permeability, a postulated early element in the pathogenesis of celiac disease. We aimed to establish the molecular basis of gliadin interaction with intestinal mucosa leading to intestinal barrier impairment. METHODS: Alpha-gliadin affinity column was loaded with intestinal mucosal membrane lysates to identify the putative gliadin-binding moiety. In vitro experiments with chemokine receptor CXCR3 transfectants were performed to confirm binding of gliadin and/or 26 overlapping 20mer alpha-gliadin synthetic peptides to the receptor. CXCR3 protein and gene expression were studied in intestinal epithelial cell lines and human biopsy specimens. Gliadin-CXCR3 interaction was further analyzed by immunofluorescence microscopy, laser capture microscopy, real-time reverse-transcription polymerase chain reaction, and immunoprecipitation/Western blot analysis. Ex vivo experiments were performed using C57BL/6 wild-type and CXCR3(-/-) mouse small intestines to measure intestinal permeability and zonulin release. RESULTS: Affinity column and colocalization experiments showed that gliadin binds to CXCR3 and that at least 2 alpha-gliadin 20mer synthetic peptides are involved in this binding. CXCR3 is expressed in mouse and human intestinal epithelia and lamina propria. Mucosal CXCR3 expression was elevated in active celiac disease but returned to baseline levels following implementation of a gluten-free diet. Gliadin induced physical association between CXCR3 and MyD88 in enterocytes. Gliadin increased zonulin release and intestinal permeability in wild-type but not CXCR3(-/-) mouse small intestine. CONCLUSIONS: Gliadin binds to CXCR3 and leads to MyD88-dependent zonulin release and increased intestinal permeability.


Assuntos
Doença Celíaca/metabolismo , Toxina da Cólera/metabolismo , Gliadina/farmacologia , Receptores CXCR3/metabolismo , Animais , Biópsia , Células CACO-2 , Doença Celíaca/imunologia , Doença Celíaca/patologia , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Gliadina/genética , Gliadina/metabolismo , Haptoglobinas , Humanos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fator 88 de Diferenciação Mieloide/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Permeabilidade/efeitos dos fármacos , Precursores de Proteínas , Ratos , Receptores CXCR3/genética , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Transfecção , Regulação para Cima/efeitos dos fármacos
9.
J Biol Chem ; 281(44): 32941-5, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16980306

RESUMO

Recent gene ablation studies in mice have shown that matriptase, a type II transmembrane serine protease, and prostasin, a glycosylphosphatidylinositol-anchored membrane serine protease, are both required for processing of the epidermis-specific polyprotein, profilaggrin, stratum corneum formation, and acquisition of epidermal barrier function. Here we present evidence that matriptase acts upstream of prostasin in a zymogen activation cascade that regulates terminal epidermal differentiation and is required for prostasin zymogen activation. Enzymatic gene trapping of matriptase combined with prostasin immunohistochemistry revealed that matriptase was co-localized with prostasin in transitional layer cells of the epidermis and that the developmental onset of expression of the two membrane proteases was coordinated and correlated with acquisition of epidermal barrier function. Purified soluble matriptase efficiently converted soluble prostasin zymogen to an active two-chain form that formed SDS-stable complexes with the serpin protease nexin-1. Whereas two forms of prostasin with molecular weights corresponding to the prostasin zymogen and active prostasin were present in wild type epidermis, prostasin was exclusively found in the zymogen form in matriptase-deficient epidermis. These data suggest that matriptase, an autoactivating protease, acts upstream from prostasin to initiate a zymogen cascade that is essential for epidermal differentiation.


Assuntos
Diferenciação Celular , Células Epidérmicas , Epiderme/enzimologia , Serina Endopeptidases/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Humanos , Camundongos , Camundongos Transgênicos , Fenótipo , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética
10.
Biochem J ; 390(Pt 1): 231-42, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15853774

RESUMO

We report in the present study the bioinformatic identification, molecular cloning and biological characterization of matriptase-3, a novel membrane-anchored serine protease that is phylogenetically preserved in fish, birds, rodents, canines and primates. The gene encoding matriptase-3 is located on syntenic regions of human chromosome 3q13.2, mouse chromosome 16B5, rat chromosome 11q21 and chicken chromosome 1. Bioinformatic analysis combined with cDNA cloning predicts a functional TTSP (type II transmembrane serine protease) with 31% amino acid identity with both matriptase/MT-SP1 and matriptase-2. This novel protease is composed of a short N-terminal cytoplasmic region followed by a transmembrane domain, a stem region with one SEA, two CUB and three LDLRa (low-density lipoprotein receptor domain class A) domains and a C-terminal catalytic serine protease domain. Transcript analysis revealed restricted, species-conserved expression of matriptase-3, with the highest mRNA levels in brain, skin, reproductive and oropharyngeal tissues. The full-length matriptase-3 cDNA directed the expression of a 90 kDa N-glycosylated protein that localized to the cell surface, as assessed by cell-surface biotin labelling. The purified activated matriptase-3 serine protease domain expressed in insect cells hydrolysed synthetic peptide substrates, with a strong preference for Arg at position P(1), and showed proteolytic activity towards several macromolecular substrates, including gelatin, casein and albumin. Interestingly, activated matriptase-3 formed stable inhibitor complexes with an array of serpins, including plasminogen activator inhibitor-1, protein C inhibitor, alpha1-proteinase inhibitor, alpha2-antiplasmin and antithrombin III. Our study identifies matriptase-3 as a novel biologically active TTSP of the matriptase subfamily having a unique expression pattern and post-translational regulation.


Assuntos
Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Serpinas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Membrana Celular , Evolução Molecular , Expressão Gênica , Humanos , Isoenzimas , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética , Especificidade por Substrato , Distribuição Tecidual
12.
J Biol Chem ; 279(45): 46981-94, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15328353

RESUMO

We report the identification and functional analysis of a type II transmembrane serine protease encoded by the mouse differentially expressed in squamous cell carcinoma (DESC) 1 gene, and the definition of a cluster of seven homologous DESC1-like genes within a 0.5-Mb region of mouse chromosome 5E1. This locus is syntenic to a region of human chromosome 4q13.3 containing the human orthologues of four of the mouse DESC1-like genes. Bioinformatic analysis indicated that all seven DESC1-like genes encode functional proteases. Direct cDNA cloning showed that mouse DESC1 encodes a multidomain serine protease with an N-terminal signal anchor, a SEA (sea urchin sperm protein, enterokinase, and agrin) domain, and a C-terminal serine protease domain. The mouse DESC1 mRNA was present in epidermal, oral, and male reproductive tissues and directed the translation of a membrane-associated 60-kDa N-glycosylated protein with type II topology. Mouse DESC1 was synthesized in insect cells as a zymogen that could be activated by exposure to trypsin. The purified activated DESC1 hydrolyzed synthetic peptide substrates, showing a preference for Arg in the P1 position. DESC1 proteolytic activity was abolished by generic inhibitors of serine proteases but not by other classes of protease inhibitors. Most interestingly, DESC1 formed stable inhibitory complexes with both plasminogen activator inhibitor-1 and protein C inhibitor that are expressed in the same tissues with DESC1, suggesting that type II transmembrane serine proteases may be novel targets for serpin inhibition. Together, these data show that mouse DESC1 encodes a functional cell surface serine protease that may have important functions in the epidermis, oral, and reproductive epithelium.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/genética , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Serina Endopeptidases/química , Serina Endopeptidases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Membrana Celular/metabolismo , Clonagem Molecular , Biologia Computacional , DNA Complementar/metabolismo , Epiderme/metabolismo , Epididimo/metabolismo , Epitélio/metabolismo , Escherichia coli/metabolismo , Feminino , Glicoproteínas/metabolismo , Glicosilação , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Hidrólise , Insetos , Masculino , Camundongos , Microscopia Confocal , Modelos Biológicos , Dados de Sequência Molecular , Família Multigênica , Peptídeos/química , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Ratos , Proteínas Recombinantes/química , Glândulas Salivares/metabolismo , Homologia de Sequência de Aminoácidos , Serina/química , Distribuição Tecidual , Transfecção , Tripsina/farmacologia
13.
Thromb Haemost ; 90(2): 185-93, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12888865

RESUMO

The recent availability of human and mouse genome sequences and expressed sequence tag databases facilitated the identification of a large new family of membrane anchored serine proteases, the type II transmembrane serine proteases or TTSPs. Analyses of human inherited disorders and gene targeting studies in mice have revealed that several members of this new protease family have critical functions in development and health. Preliminary studies also suggest that aberrant expression of type II transmembrane serine proteases may be linked to disease progression. The knowledge gathered thus far of the genetics, physiology, and pathology of this interesting new serine protease family will be reviewed here in brief.


Assuntos
Serina Endopeptidases/fisiologia , Animais , Progressão da Doença , Crescimento/fisiologia , Homeostase/fisiologia , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo
14.
Cancer Metastasis Rev ; 22(2-3): 237-58, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12784999

RESUMO

Dysregulated proteolysis is a hallmark of cancer. Malignant cells require a range of proteolytic activities to enable growth, survival, and expansion. Serine proteases of the S1 or trypsin-like family have well recognized roles in the maintenance of normal homeostasis as well as in the pathology of diseases such as cancer. Recently a rapidly expanding subgroup of S1 proteases has been recognized that are directly anchored to plasma membranes. These membrane anchored serine proteases are anchored either via a carboxy-terminal transmembrane domain (Type I), a carboxy terminal hydrophobic region that functions as a signal for membrane attachment via a glycosyl-phosphatidylinositol linkage (GPI-anchored), or via an amino terminal proximal transmembrane domain (Type II or TTSP). The TTSPs also encode multiple domains in their stem regions that may function in regulatory interactions. The serine protease catalytic domains of these enzymes show high homology but also possess features indicating unique substrate specificities. It is likely that the membrane anchored serine proteases have evolved to perform complex functions in the regulation of cellular signaling events at the plasma membrane and within the extracellular matrix. Disruption or mutation of several of the genes encoding these proteases are associated with disease. Many of the membrane anchored serine proteases show restricted tissue distribution in normal cells, but their expression is widely dysregulated during tumor growth and progression. Diagnostic or therapeutic targeting of the membrane anchored serine proteases has potential as promising new approaches for the treatment of cancer and other diseases.


Assuntos
Membrana Celular/fisiologia , Glicosilfosfatidilinositóis/fisiologia , Neoplasias/enzimologia , Serina Endopeptidases/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Neoplasias/terapia , Homologia de Sequência de Aminoácidos , Transdução de Sinais
15.
J Cell Biol ; 160(7): 1009-15, 2003 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-12668656

RESUMO

The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180, a novel mesenchymally expressed member of the macrophage mannose receptor family of endocytic receptors, is a key player in this process. Fibroblasts from mice with a targeted deletion in the uPARAP/Endo180 gene displayed a near to complete abrogation of collagen endocytosis. Furthermore, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions.


Assuntos
Colágeno/metabolismo , Endocitose , Fibroblastos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Colagenases/metabolismo , Fibronectinas/metabolismo , Deleção de Genes , Metaloproteinase 13 da Matriz , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores Mitogênicos/química , Receptores Mitogênicos/deficiência , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Transferrina/metabolismo
16.
J Biol Chem ; 277(47): 45154-61, 2002 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-12192005

RESUMO

Matrix metalloproteinase-14 is required for degradation of fibrillar collagen by mesenchymal cells. Here we show that keratinocytes use an alternative plasminogen and matrix metalloproteinase-13-dependent pathway for dissolution of collagen fibrils. Primary keratinocytes displayed an absolute requirement for serum to dissolve collagen. Dissolution of collagen was abolished in plasminogen-depleted serum and could be restored by the exogenous addition of plasminogen. Both plasminogen activator inhibitor-1 and tissue inhibitor of metalloproteinase blocked collagen dissolution, demonstrating the requirement of both plasminogen activation and matrix metalloproteinase activity for degradation. Cell surface plasmin activity was critical for the degradation process as aprotinin, but not alpha(2)-antiplasmin, prevented collagen dissolution. Keratinocytes with single deficiencies in either urokinase or tissue plasminogen activator retained the ability to dissolve collagen. However, collagen fibril dissolution was abolished in keratinocytes with a combined deficiency in both urokinase and tissue plasminogen activator. Combined, but not single, urokinase and tissue plasminogen activator deficiency also completely blocked the activation of the fibrillar collagenase, matrix metalloproteinase-13, by keratinocytes. The activation of matrix metalloproteinase-13 in normal keratinocytes was prevented by plasminogen activator inhibitor-1 and aprotinin but not by tissue inhibitor of metalloproteinase-1 and -2, suggesting that plasmin activates matrix metalloproteinase-13 directly. We propose that plasminogen activation facilitates keratinocyte-mediated collagen breakdown via the direct activation of matrix metalloproteinase-13 and possibly other fibrillar collagenases.


Assuntos
Colágeno/metabolismo , Colagenases/metabolismo , Queratinócitos/metabolismo , Plasminogênio/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Meios de Cultura Livres de Soro , Ativação Enzimática , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Marcação de Genes , Humanos , Queratinócitos/citologia , Masculino , Metaloproteinase 13 da Matriz , Metaloproteinases da Matriz Associadas à Membrana , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativadores de Plasminogênio/genética , Receptores de Superfície Celular/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Inibidores de Serina Proteinase/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tipo Uroquinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...