Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 271(1): 69-83, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29630741

RESUMO

Hyperspectral imaging (HSI) and classification are established methods that are being applied in new ways to the analysis of nanoscale materials in a variety of matrices. Typically, enhanced darkfield microscopy (EDFM)-based HSI data (also known as image datacubes) are collected in the wavelength range of 400-1000 nm for each pixel in a datacube. Utilising different spectral library (SL) creation methods, spectra from pixels in the datacube corresponding to known materials can be collected into reference spectral libraries (RSLs), which can be used to classify materials in datacubes of experimental samples using existing classification algorithms. In this study, EDFM-HSI was used to visualise and analyse industrial cerium oxide (CeO2 ; ceria) nanoparticles (NPs) in rat lung tissues and in aqueous suspension. Rats were exposed to ceria NPs via inhalation, mimicking potential real-world occupational exposures. The lung tissues were histologically prepared: some tissues were stained with hematoxylin and eosin (H&E) and some were left unstained. The goal of this study was to determine how HSI and classification results for ceria NPs were influenced by (1) the use of different RSL creation and classification methods and (2) the application of those methods to samples in different matrices (stained tissue, unstained tissue, or aqueous solution). Three different RSL creation methods - particle filtering (PF), manual selection, and spectral hourglass wizard (SHW) - were utilised to create the RSLs of known materials in unstained and stained tissue, and aqueous suspensions, which were then used to classify the NPs in the different matrices. Two classification algorithms - spectral angle mapper (SAM) and spectral feature fitting (SFF) - were utilised to determine the presence or absence of ceria NPs in each sample. The results from the classification algorithms were compared to determine how each influenced the classification results for samples in different matrices. The results showed that sample matrix and sample preparation significantly influenced the NP classification thresholds in the complex matrices. Moreover, considerable differences were observed in the classification results when utilising each RSL creation and classification method for each type of sample. Results from this study illustrate the importance of appropriately selecting HSI algorithms based on specific material and matrix characteristics in order to obtain optimal classification results. As HSI is increasingly utilised for NP characterisation for clinical, environmental and health and safety applications, this investigation is important for further refining HSI protocols while ensuring appropriate data collection and analysis.


Assuntos
Cério/química , Nanopartículas Metálicas/classificação , Microscopia/métodos , Animais , Técnicas Histológicas , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Nanopartículas Metálicas/química , Ratos , Água
2.
J Occup Environ Hyg ; 15(6): D45-D50, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29580184

RESUMO

Emerging and novel technologies, materials, and information integrated into increasingly automated and networked manufacturing processes or into traditional manufacturing settings are enhancing the efficiency and productivity of manufacturing. Globally, there is a move toward a new era in manufacturing that is characterized by: (1) the ability to create and deliver more complex designs of products; (2) the creation and use of materials with new properties that meet a design need; (3) the employment of new technologies, such as additive and digital techniques that improve on conventional manufacturing processes; and (4) a compression of the time from initial design concept to the creation of a final product. Globally, this movement has many names, but "advanced manufacturing" has become the shorthand for this complex integration of material and technology elements that enable new ways to manufacture existing products, as well as new products emerging from new technologies and new design methods. As the breadth of activities associated with advanced manufacturing suggests, there is no single advanced manufacturing industry. Instead, aspects of advanced manufacturing can be identified across a diverse set of business sectors that use manufacturing technologies, ranging from the semiconductors and electronics to the automotive and pharmaceutical industries. The breadth and diversity of advanced manufacturing may change the occupational and environmental risk profile, challenge the basic elements of comprehensive health and safety (material, process, worker, environment, product, and general public health and safety), and provide an opportunity for development and dissemination of occupational and environmental health and safety (OEHS) guidance and best practices. It is unknown how much the risk profile of different elements of OEHS will change, thus requiring an evolution of health and safety practices. These changes may be accomplished most effectively through multi-disciplinary, multi-sector, public-private dialogue that identifies issues and offers solutions.


Assuntos
Indústria Manufatureira/métodos , Saúde Ocupacional , Saúde Ambiental/métodos , Indústria Manufatureira/tendências , Segurança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...