Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 17(7): e202300532, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735734

RESUMO

The attenuation coefficient ( µ OCT ) measured by optical coherence tomography (OCT) has been used to determine tissue hydration. Previous dual-wavelength OCT systems could not attain the needed precision, which we attribute to the absence of wavelength-dependent scattering of tissue in the underlying model. Assuming that scattering can be described using two parameters, we propose a triple/quadrupole-OCT system to achieve clinically relevant precision in water volume fraction. In this study, we conduct a quantitative analysis to determine the necessary precision of µ OCT measurements and compare it with numerical simulation. Our findings emphasize that achieving a clinically relevant assessment of a 2% water fraction requires determining the attenuation coefficient with a remarkable precision of 0.01 m m - 1 . This precision threshold is influenced by the chosen wavelength for attenuation measurement and can be enhanced through the inclusion of a fourth wavelength range.


Assuntos
Tomografia de Coerência Óptica , Água , Água/química , Humanos
2.
J Biomed Opt ; 28(6): 066001, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37325192

RESUMO

Significance: Parametric imaging of the attenuation coefficient µOCT using optical coherence tomography (OCT) is a promising approach for evaluating abnormalities in tissue. To date, a standardized measure of accuracy and precision of µOCT by the depth-resolved estimation (DRE) method, as an alternative to least squares fitting, is missing. Aim: We present a robust theoretical framework to determine accuracy and precision of the DRE of µOCT. Approach: We derive and validate analytical expressions for the accuracy and precision of µOCT determination by the DRE using simulated OCT signals in absence and presence of noise. We compare the theoretically achievable precisions of the DRE method and the least-squares fitting approach. Results: Our analytical expressions agree with the numerical simulations for high signal-to-noise ratios and qualitatively describe the dependence on noise otherwise. A commonly used simplification of the DRE method results in a systematic overestimation of the attenuation coefficient in the order of µOCT2×Δ, where Δ is the pixel stepsize. When µOCT·|AFR|≲1.8, µOCT is reconstructed with higher precision by the depth-resolved method compared to fitting over the length of an axial fitting range |AFR|. Conclusions: We derived and validated expressions for the accuracy and precision of DRE of µOCT. A commonly used simplification of this method is not recommended as being used for OCT-attenuation reconstruction. We give a rule of thumb providing guidance in the choice of estimation method.


Assuntos
Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Razão Sinal-Ruído
3.
J Biomed Opt ; 27(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35945668

RESUMO

SIGNIFICANCE: Optical coherence tomography (OCT) is an interferometric imaging modality, which provides tomographic information on the microscopic scale. Furthermore, OCT signal analysis facilitates quantification of tissue optical properties (e.g., the attenuation coefficient), which provides information regarding the structure and organization of tissue. However, a rigorous and standardized measure of the precision of the OCT-derived optical properties, to date, is missing. AIM: We present a robust theoretical framework, which provides the Cramér -Rao lower bound σµOCT for the precision of OCT-derived optical attenuation coefficients. APPROACH: Using a maximum likelihood approach and Fisher information, we derive an analytical solution for σµOCT when the position and depth of focus are known. We validate this solution, using simulated OCT signals, for which attenuation coefficients are extracted using a least-squares fitting procedure. RESULTS: Our analytical solution is in perfect agreement with simulated data without shot noise. When shot noise is present, we show that the analytical solution still holds for signal-to-noise ratios (SNRs) in the fitting window being above 20 dB. For other cases (SNR<20 dB, focus position not precisely known), we show that the numerical calculation of the precision agrees with the σµOCT derived from simulated signals. CONCLUSIONS: Our analytical solution provides a fast, rigorous, and easy-to-use measure for OCT-derived attenuation coefficients for signals above 20 dB. The effect of uncertainties in the focal point position on the precision in the attenuation coefficient, the second assumption underlying our analytical solution, is also investigated by numerical calculation of the lower bounds. This method can be straightforwardly extended to uncertainty in other system parameters.


Assuntos
Tomografia de Coerência Óptica , Análise dos Mínimos Quadrados , Funções Verossimilhança , Razão Sinal-Ruído , Tomografia de Coerência Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...