Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38063220

RESUMO

The regularized and restored semi-local meta-generalized gradient approximation (meta-GGA) exchange-correlation functional r2SCAN [Furness et al., J. Phys. Chem. Lett. 11, 8208-8215 (2020)] is used to create adiabatic-connection-derived global double-hybrid functionals employing spin-opposite-scaled MP2. The 0-DH, CIDH, QIDH, and 0-2 type double-hybrid functionals are assessed as a starting point for further modification. Variants with 50% and 69% Hartree-Fock exchange (HFX) are empirically optimized (Pr2SCAN50 and Pr2SCAN69), and the effect of MP2-regularization (κPr2SCAN50) and range-separated HFX (ωPr2SCAN50) is evaluated. All optimized functionals are combined with the state-of-the-art London dispersion corrections D4 and NL. The resulting functionals are assessed comprehensively for their performance on main-group and metal-organic thermochemistry on 90 different benchmark sets containing 25 800 data points. These include the extensive GMTKN55 database, additional sets for main-group chemistry, and multiple sets for transition-metal complexes, including the ROST61, the MOR41, and the MOBH35 sets. As the main target of this study is the development of a broadly applicable, robust functional with low empiricism, special focus is put on variants with moderate amounts of HFX (50%), which are compared to the so far successful PWPB95-D4 (50% HFX, 20% MP2 correlation) functional. The overall best variant, ωPr2SCAN50-D4, performs well on main-group and metal-organic thermochemistry, followed by Pr2SCAN69-D4 that offers a slight edge for metal-organic thermochemistry and by the low HFX global double-hybrid Pr2SCAN50-D4 that performs robustly across all tested sets. All four optimized functionals, Pr2SCAN69-D4, Pr2SCAN50-D4, κPr2SCAN50-D4, and ωPr2SCAN50-D4, outperform the PWPB95-D4 functional.

2.
J Chem Theory Comput ; 19(21): 7695-7703, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37862406

RESUMO

The unfavorable scaling (N5) of the conventional second-order Møller-Plesset theory (MP2) typically prevents the application of double-hybrid (DH) density functionals to large systems with more than 100 atoms. A prominent approach to reduce the computational demand of electron correlation methods is the domain-based local pair natural orbital (DLPNO) approximation that is successfully used in the framework of DLPNO-CCSD(T). Its extension to MP2 [Pinski P.; Riplinger, C.; Valeev, E. F.; Neese, F. J. Chem. Phys. 2015, 143, 034108.] paved the way for DLPNO-based DH (DLPNO-DH) methods. In this work, we assess the accuracy of the DLPNO-DH approximation compared to conventional DHs on a large number of 7925 data points for thermochemistry and 239 data points for structural features, including main-group and transition-metal systems. It is shown that DLPNO-DH-DFT can be applied successfully to perform energy calculations and geometry optimizations for large molecules at a drastically reduced computational cost. Furthermore, PNO space extrapolation is shown to be applicable, similar to its DLPNO-CCSD(T) counterpart, to reduce the remaining error.

3.
J Chem Theory Comput ; 19(18): 6208-6225, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37655473

RESUMO

Generating accurate ab initio ionization energies for transition metal complexes is an important step toward the accurate computational description of their electrocatalytic reactions. Benchmark-quality data is required for testing existing theoretical methods and developing new ones but is complicated to obtain for many transition metal compounds due to the potential presence of both strong dynamical and static electron correlation. In this regime, it is questionable whether the so-called gold standard, coupled cluster with singles, doubles, and perturbative triples (CCSD(T)), provides the desired level of accuracy─roughly 1-3 kcal/mol. In this work, we compiled a test set of 28 3d metal-containing molecules relevant to homogeneous electrocatalysis (termed 3dTMV) and computed their vertical ionization energies (ionization potentials) with CCSD(T) and phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) in the def2-SVP basis set. A substantial effort has been made to converge away the phaseless bias in the ph-AFQMC reference values. We assess a wide variety of multireference diagnostics and find that spin-symmetry breaking of the CCSD wave function and the PBE0 density functional correlate well with our analysis of multiconfigurational wave functions. We propose quantitative criteria based on symmetry breaking to delineate correlation regimes inside of which appropriately performed CCSD(T) can produce mean absolute deviations from the ph-AFQMC reference values of roughly 2 kcal/mol or less and outside of which CCSD(T) is expected to fail. We also present a preliminary assessment of density functional theory (DFT) functionals on the 3dTMV set.

4.
J Comput Chem ; 44(27): 2120-2129, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37401535

RESUMO

The semiempirical GFNn-xTB ( n = 1 , 2 ) tight-binding methods are extended with a spin-dependent energy term (spin-polarization), enabling the fast and efficient screening of different spin states for transition metal complexes. While GFNn-xTB methods inherently can not differentiate properly between high-spin (HS) and low-spin (LS) states, this shortcoming is corrected with the presented methods termed spGFNn-xTB. The performance of spGFNn-xTB methods for spin state energy splittings is evaluated on a newly compiled benchmark set of 90 complexes (27 HS and 63 LS complexes) containing 3d, 4d, and 5d transition metals (termed TM90S) employing DFT references at the TPSSh-D4/def2-QZVPP level of theory. The challenging TM90S set contains complexes with charges between - 4 and +3, spin multiplicities between 1 and 6, and spin-splitting energies that range from - 47.8 to 146.6 kcal/mol with a mean average of 32.2 kcal/mol. On this set the (sp)GFNn-xTB methods, the PM6-D3H4 method, and the PM7 method are evaluated with spGFN1-xTB yielding the lowest MAD of 19.6 kcal/mol followed by spGFN2-xTB with 24.8 kcal/mol. While for the 4d and 5d subsets small or no improvements are observed with spin-polarization, large improvements are obtained for the 3d subset with spGFN1-xTB yielding the smallest MAD of 14.2 kcal/mol followed by spGFN2-xTB with 17.9 kcal/mol and PM6-D3H4 with 28.4 kcal/mol. The correct sign of the spin state splittings is obtained with spGFN2-xTB in 89% of all cases closely followed by spGFN1-xTB with 88%. On the full set, a pure semiempirical vertical spGFN2-xTB//GFN2-xTB-based workflow for screening purposes yields a slightly better MAD of 22.2 kcal/mol due to error compensation, while being qualitative correct for one additional case. In combination with their low computational cost (scanning spin states in seconds), the spGFNn-xTB methods represent robust tools for pre-screening steps of spin state calculations and high-throughput workflows.

5.
J Chem Phys ; 156(13): 134105, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395897

RESUMO

The regularized and restored semilocal meta-generalized gradient approximation (meta-GGA) exchange-correlation functional r2SCAN [Furness et al., J. Phys. Chem. Lett. 11, 8208-8215 (2020)] is used to create three global hybrid functionals with varying admixtures of Hartree-Fock "exact" exchange (HFX). The resulting functionals r2SCANh (10% HFX), r2SCAN0 (25% HFX), and r2SCAN50 (50% HFX) are combined with the semi-classical D4 London dispersion correction. The new functionals are assessed for the calculation of molecular geometries, main-group, and metalorganic thermochemistry at 26 comprehensive benchmark sets. These include the extensive GMTKN55 database, ROST61, and IONPI19 sets. It is shown that a moderate admixture of HFX leads to relative improvements of the mean absolute deviations for thermochemistry of 11% (r2SCANh-D4), 16% (r2SCAN0-D4), and 1% (r2SCAN50-D4) compared to the parental semi-local meta-GGA. For organometallic reaction energies and barriers, r2SCAN0-D4 yields an even larger mean improvement of 35%. The computation of structural parameters (geometry optimization) does not systematically profit from the HFX admixture. Overall, the best variant r2SCAN0-D4 performs well for both main-group and organometallic thermochemistry and is better or on par with well-established global hybrid functionals, such as PW6B95-D4 or PBE0-D4. Regarding systems prone to self-interaction errors (SIE4x4), r2SCAN0-D4 shows reasonable performance, reaching the quality of the range-separated ωB97X-V functional. Accordingly, r2SCAN0-D4 in combination with a sufficiently converged basis set [def2-QZVP(P)] represents a robust and reliable choice for general use in the calculation of thermochemical properties of both main-group and organometallic chemistry.

6.
Inorg Chem ; 60(22): 17407-17413, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34735115

RESUMO

We present monometallic H2 production electrocatalysts containing electron-rich triamine-cyclopentadienyl (Cp) ligands coordinated to iron. After selective CO extrusion from the iron tricarbonyl precursors, electrocatalysis is observed via cyclic voltammetry in the presence of an exogenous acid. Contrary to the fact that amines in the secondary coordination sphere are often protonated during electrocatalysis, comprehensive quantum-chemical calculations indicate that the amines likely do not function as proton relays; instead, endo-Cp ring protonation is most favorable after 1e- reduction. This unusual mechanistic pathway emphasizes the need to consider a broad domain of H+/e- addition products by synergistically combining experimental and theoretical resources.

7.
J Phys Chem A ; 124(35): 7166-7176, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32786975

RESUMO

The calculation of redox potentials by semiempirical quantum mechanical (SQM) approaches is evaluated with a focus on the recently developed GFNn-xTB methods. The assessment is based on a data set comprising 313 experimental redox potentials of small to medium-sized organic and organometallic molecules in various solvents. This compilation is termed as ROP313 (reduction and oxidation potentials 313) and divided for analysis purposes into the organic subset OROP and the organometallic subset OMROP. Corresponding data for a few common density functional theory (DFT) functionals employing extended AO basis sets and small basis-set DFT composite schemes are computed for comparison. Continuum solvation models are used to calculate the important solvation free energy contribution. The results for ROP313 show that the GFNn-xTB methods provide a robust, efficient, and generally applicable workflow for the routine calculation of redox potentials. The GFNn-xTB methods outperform the PMx competitor for the OROP subset (mean absolute deviation from the experiment, MADGFN2-xTB = 0.30 V, MADGFN1-xTB = 0.31 V, PM6-D3H4 = 0.61 V, PM7 = 0.60 V), almost reaching low-cost DFT quality (MADB97-3c = 0.25 V) at drastically reduced computational cost (2-3 orders of magnitude). All SQM methods perform considerably worse for the OMROP subset. Here, the GFN2-xTB still yields semiquantitative results slightly better and more robustly than with the PMx methods (MADGFN2-xTB = 0.74 V, PM6-D3H4 = 0.78 V, PM7 = 0.82 V). The proposed workflow enables large-scale quantum chemical computations of organic and, to a lesser extent, organometallic molecule redox potentials on common laptop computers in seconds to minutes of computation time enabling, e.g., screening of extended compound libraries.

8.
Angew Chem Int Ed Engl ; 58(32): 11078-11087, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31141262

RESUMO

Large transition-metal complexes are used in numerous areas of chemistry. Computer-aided theoretical investigations of such complexes are limited by the sheer size of real systems often consisting of hundreds to thousands of atoms. Accordingly, the development and thorough evaluation of fast semi-empirical quantum chemistry methods that are universally applicable to a large part of the periodic table is indispensable. Herein, we report on the capability of the recently developed GFNn-xTB method family for full quantum-mechanical geometry optimisation of medium to very large transition-metal complexes and organometallic supramolecular structures. The results for a specially compiled benchmark set of 145 diverse closed-shell transition-metal complex structures for all metals up to Hg are presented. Further the GFNn-xTB methods are tested on three established benchmark sets regarding reaction energies and barrier heights of organometallic reactions.

9.
J Chem Phys ; 150(15): 154122, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31005066

RESUMO

The so-called D4 model is presented for the accurate computation of London dispersion interactions in density functional theory approximations (DFT-D4) and generally for atomistic modeling methods. In this successor to the DFT-D3 model, the atomic coordination-dependent dipole polarizabilities are scaled based on atomic partial charges which can be taken from various sources. For this purpose, a new charge-dependent parameter-economic scaling function is designed. Classical charges are obtained from an atomic electronegativity equilibration procedure for which efficient analytical derivatives with respect to nuclear positions are developed. A numerical Casimir-Polder integration of the atom-in-molecule dynamic polarizabilities then yields charge- and geometry-dependent dipole-dipole dispersion coefficients. Similar to the D3 model, the dynamic polarizabilities are precomputed by time-dependent DFT and all elements up to radon (Z = 86) are covered. The two-body dispersion energy expression has the usual sum-over-atom-pairs form and includes dipole-dipole as well as dipole-quadrupole interactions. For a benchmark set of 1225 molecular dipole-dipole dispersion coefficients, the D4 model achieves an unprecedented accuracy with a mean relative deviation of 3.8% compared to 4.7% for D3. In addition to the two-body part, three-body effects are described by an Axilrod-Teller-Muto term. A common many-body dispersion expansion was extensively tested, and an energy correction based on D4 polarizabilities is found to be advantageous for larger systems. Becke-Johnson-type damping parameters for DFT-D4 are determined for more than 60 common density functionals. For various standard energy benchmark sets, DFT-D4 slightly but consistently outperforms DFT-D3. Especially for metal containing systems, the introduced charge dependence of the dispersion coefficients improves thermochemical properties. We suggest (DFT-)D4 as a physically improved and more sophisticated dispersion model in place of DFT-D3 for DFT calculations as well as other low-cost approaches like semi-empirical models.

10.
J Am Chem Soc ; 141(5): 1882-1886, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30669845

RESUMO

We have demonstrated the ability of TEMPO to catalyze H· transfer from (C5Ph5)Cr(CO)3H to a trityl radical (tris( p- tert-butylphenyl)methyl radical). We have measured the rate constant and activation parameters for the direct reaction, and for each step in the catalytic process: H· transfer from (C5Ph5)Cr(CO)3H to TEMPO and H· transfer from TEMPO-H to the trityl radical. We have compared the measured rate constants with the differences in bond strength, and with the changes in the Global Electrophilicity Index determined with high accuracy for each radical using state of the art quantum chemical methods. We conclude that neither is a major factor in determining the rates of these H· transfer reactions and that the effectiveness of TEMPO as a catalyst is largely the result of its relative lack of steric congestion compared to the trityl radical.

11.
Acc Chem Res ; 52(1): 258-266, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30586286

RESUMO

Quantum chemical methods are nowadays able to determine properties of larger chemical systems with high accuracy and Kohn-Sham density functional theory (DFT) in particular has proven to be robust and suitable for everyday applications of electronic structure theory. A clear disadvantage of many established standard density functional approximations like B3LYP is their inability to describe long-range electron correlation effects. The inclusion of such effects, also termed London dispersion, into DFT has been extensively researched in recent years, resulting in some efficient and routinely used correction schemes. The well-established D3 method has demonstrated its efficiency and accuracy in numerous applications since 2010. Recently, it was improved by developing the successor (termed D4) which additionally includes atomic partial charge information for the generation of pairwise dispersion coefficients. These coefficients determine the leading-order (two-body) and higher-order (three- or many-body) terms of the D4 dispersion energy which is simply added to a standard DFT energy. With its excellent accuracy-to-cost ratio, the DFT-D4 method is well suited for the determination of structures and chemical properties for molecules of most kinds. While dispersion effects in organic molecules are nowadays well studied, much less is known for organometallic complexes. For such systems, there has been a growing interest in designing dispersion-controlled reactions especially in the field of homogeneous catalysis. Here, efficient electronic structure methods are necessary for screening of promising model complexes and quantifying dispersion effects. In this Account, we describe the quality of calculated structural and thermodynamic properties in gas-phase obtained with DFT-D4 corrected methods, specifically for organometallic complexes. The physical effects leading to London dispersion interactions are briefly discussed in the picture of second-order perturbation theory. Subsequently, basic theoretical aspects of the D4 method are introduced followed by selected case studies. Several chemical examples are presented starting with the analysis of transition metal thermochemistry and noncovalent interactions for small, heavy element containing main group compounds. Computed reaction energies can only match highly accurate reference values when all energy contributions are included in the DFT treatment, thus highlighting the major role of dispersion interactions for the accurate description of thermochemistry in gas-phase. Furthermore, the correlation between structural and catalytic properties is emphasized where the accessibility of high quality structures is essential for reaction planning and catalyst design. We present calculations for aggregates of organometallic systems with intrinsically large repulsive electrostatic interactions which can be stabilized by London dispersion effects. The newly introduced inclusion of atomic charge information in the DFT-D4 model robustly leads to quantitatively improved dispersion energies in particular for metallic systems. By construction it yields results which are easily understandable due to a clear separation into hybridization and charge (oxidation) state and two- and many-body effects, respectively. Due to its high computational efficiency, the D4 dispersion model is even applicable to low-cost classical and semiempirical theoretical methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...