Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 32(11): 2685-2697, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34606712

RESUMO

The collision-induced resonant excitation process in real quadrupole ion traps is revisited theoretically and experimentally by explicitly including in the discussion the influence of higher order potential impurities. This includes mainly the dependence of the secular oscillation frequency fion on the ion's oscillation amplitude zmax. Due to frequency calibration, commercial ion traps use excitation frequencies fexc that are higher than the theoretical secular oscillation frequency fion. This may lead to switching in frequency order between fexc and fion that can allow ions to stay longer in on-resonance. It is also found that there is a most efficient but also a harshest excitation frequency, which are not identical. These phenomena are explained and described with a simple harmonic oscillator model and precise numerical calculations, using the trajectory simulation program ITSIM 5.0. Experimental MS2 have been performed with the thermometer ion leucine-enkephalin, which are then in line with expectations from the trajectory calculations. The important difference to the existing literature is that, here, overexcitation is characterized by the observed a4/b4 fragment-ion ratio, while the fragmentation efficiency was kept constant. By slightly increasing the excitation frequency one can obtain drastically different effective collisional temperatures. This knowledge gives even commercial ion traps, without instrument adjustments, the possibility of producing energetically versatile fragment ion spectra. It is also shown that the damped driven harmonic oscillator cannot be used as a simplified model of the motion during the resonant excitation process in real ion traps.

3.
J Chem Phys ; 148(6): 064308, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29448797

RESUMO

Laser-induced cross-linking of polyynes is successfully hindered when the polyyne is encapsulated as part of a rotaxane and therefore protected by a surrounding macrocycle. When the rotaxane is electrosprayed, however, noncovalent aggregate ions are efficiently formed. Aggregates of considerable size (including more than 50 rotaxane molecules with masses beyond 100k Da) and charge states (up to 13 charges and beyond) have been observed. Either protons or sodium cations act as the charge carriers. These aggregates are not formed when the individual components of the rotaxane, i.e., the macrocycle or the polyyne, are separately electrosprayed. This underlines the structural importance of the rotaxane for the aggregate formation. Straightforward force field calculations indicate that the polyyne thread hinders the folding of the macrocycles, which facilitates the bonding interaction between the two components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...