Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 20(10): 7709-7715, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32986437

RESUMO

Electron and hole Bloch states in bilayer graphene exhibit topological orbital magnetic moments with opposite signs, which allows for tunable valley-polarization in an out-of-plane magnetic field. This property makes electron and hole quantum dots (QDs) in bilayer graphene interesting for valley and spin-valley qubits. Here, we show measurements of the electron-hole crossover in a bilayer graphene QD, demonstrating opposite signs of the magnetic moments associated with the Berry curvature. Using three layers of top gates, we independently control the tunneling barriers while tuning the occupation from the few-hole regime to the few-electron regime, crossing the displacement-field-controlled band gap. The band gap is around 25 meV, while the charging energies of the electron and hole dots are between 3 and 5 meV. The extracted valley g-factor is around 17 and leads to opposite valley polarization for electrons and holes at moderate B-fields. Our measurements agree well with tight-binding calculations for our device.

2.
Phys Rev Lett ; 124(17): 177701, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412294

RESUMO

We report on measurements of quantized conductance in gate-defined quantum point contacts in bilayer graphene that allow the observation of subband splittings due to spin-orbit coupling. The size of this splitting can be tuned from 40 to 80 µeV by the displacement field. We assign this gate-tunable subband splitting to a gap induced by spin-orbit coupling of Kane-Mele type, enhanced by proximity effects due to the substrate. We show that this spin-orbit coupling gives rise to a complex pattern in low perpendicular magnetic fields, increasing the Zeeman splitting in one valley and suppressing it in the other one. In addition, we observe a spin polarized channel of 6e^{2}/h at high in-plane magnetic field and signatures of interaction effects at the crossings of spin-split subbands of opposite spins at finite magnetic field.

3.
Nano Lett ; 18(8): 4785-4790, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29949375

RESUMO

We present gate-controlled single-, double-, and triple-dot operation in electrostatically gapped bilayer graphene. Thanks to the recent advancements in sample fabrication, which include the encapsulation of bilayer graphene in hexagonal boron nitride and the use of graphite gates, it has become possible to electrostatically confine carriers in bilayer graphene and to completely pinch-off current through quantum dot devices. Here, we discuss the operation and characterization of electron-hole double dots. We show a remarkable degree of control of our device, which allows the implementation of two different gate-defined electron-hole double-dot systems with very similar energy scales. In the single-dot regime, we extract excited state energies and investigate their evolution in a parallel magnetic field, which is in agreement with a Zeeman-spin-splitting expected for a g-factor of 2.

4.
Opt Express ; 24(26): 29984-29993, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059383

RESUMO

We report for the first time and characterize experimentally the complex optical conductivity of graphene on silicon photonic waveguides. This permits us to predict accurately the behavior of photonic integrated devices encompassing graphene layers. Exploiting a Si microring add/drop resonator, we show the effect of electrical gating of graphene on the complex effective index of the waveguide by measuring both the wavelength shift of the resonance and the change in the drop peak transmission. Due to electro-refractive effect of graphene a giant (>10-3) change in the effective index is demonstrated for the first time on Si photonics waveguides and this large effect will crucially impact performances and consumption of Si photonics devices. We confirmed the results by two independent experiments involving two different gating schemes: Si gating through the ridge waveguide, and polymer-electrolyte gating. Both the experiments demonstrate a very large phase effect in good agreement with numerical calculations. The reported results validate the Kubo model for the case of graphene-Si photonics interfaces and for propagation in this type of waveguide. This is fundamental for the next design and fabrication of future graphene-silicon photonics devices.

5.
Nano Lett ; 14(9): 5371-5, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25144320

RESUMO

We report on the first direct experimental observation of carrier multiplication in graphene reaching a multiplication factor of up to 2 and persisting on a picoseconds time scale. Exploiting multicolor pump-probe measurement techniques, the excited nonequilibrium carrier distribution is retrieved on an ultrafast time scale. This provides access to the temporal evolution of the optically excited carrier density and thus allows quantitative conclusions on possible carrier multiplication. Microscopic time- and momentum-resolved calculations on the ultrafast relaxation dynamics of optically excited carriers confirm the observation of carrier multiplication under corresponding experimental conditions, suggesting graphene as a promising material for novel high-efficiency photodetection devices.

6.
Nano Lett ; 12(3): 1324-8, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22339809

RESUMO

The emergence of graphene with its unique electrical properties has triggered hopes in the electronic devices community regarding its exploitation as a channel material in field effect transistors. Graphene is especially promising for devices working at frequencies in the 100 GHz range. So far, graphene field effect transistors (GFETs) have shown cutoff frequencies up to 300 GHz, while exhibiting poor voltage gains, another important figure of merit for analog high frequency applications. In the present work, we show that the voltage gain of GFETs can be improved significantly by using bilayer graphene, where a band gap is introduced through a vertical electric displacement field. At a displacement field of -1.7 V/nm the bilayer GFETs exhibit an intrinsic voltage gain up to 35, a factor of 6 higher than the voltage gain in corresponding monolayer GFETs. The transconductance, which limits the cutoff frequency of a transistor, is not degraded by the displacement field and is similar in both monolayer and bilayer GFETs. Using numerical simulations based on an atomistic p(z) tight-binding Hamiltonian we demonstrate that this approach can be extended to sub-100 nm gate lengths.


Assuntos
Amplificadores Eletrônicos , Grafite/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Transistores Eletrônicos , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
7.
Nano Lett ; 11(7): 2640-3, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21688768

RESUMO

The unique property of bilayer graphene to show a band gap tunable by external electrical fields enables a variety of different device concepts with novel functionalities for electronic, optoelectronic, and sensor applications. So far the operation of bilayer graphene-based field effect transistors requires two individual gates to vary the channel's conductance and to create a band gap. In this paper, we report on a method to increase the on/off ratio in single gated bilayer graphene field effect transistors by adsorbate doping. The adsorbate dopants on the upper side of the graphene establish a displacement field perpendicular to the graphene surface breaking the inversion symmetry of the two graphene layers. Low-temperature measurements indicate that the increased on/off ratio is caused by the opening of a mobility gap.


Assuntos
Grafite/química , Transistores Eletrônicos , Adsorção , Nanotecnologia , Dióxido de Silício/química , Propriedades de Superfície
8.
Phys Rev Lett ; 103(8): 087203, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19792755

RESUMO

We report on electrical measurements of the effective density of states in the ferromagnetic semiconductor material (Ga,Mn)As. By analyzing the conductivity correction to an enhanced electron-electron interaction the electrical diffusion constant was extracted for (Ga,Mn)As samples of different dimensionality. Using the Einstein relation allows us to deduce the effective density of states of (Ga,Mn)As at the Fermi energy.

9.
Phys Rev Lett ; 99(11): 116803, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17930460

RESUMO

We report on the observation of weak localization in arrays of (Ga,Mn)As nanowires at millikelvin temperatures. The corresponding phase coherence length L phi is typically between 100 and 200 nm at 20 mK. Strong spin-orbit interaction in the material is manifested by a weak antilocalization correction around zero magnetic field.

10.
Phys Rev Lett ; 97(5): 056803, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-17026129

RESUMO

To understand quantum mechanical transport in a ferromagnetic semiconductor, the knowledge of basic material properties such as the phase coherence length and corresponding dephasing mechanism are indispensable ingredients. The lack of observable quantum phenomena has prevented experimental access to these quantities so far. Here we report the observations of universal conductance fluctuations in ferromagnetic (Ga,Mn)As. The analysis of the length and temperature dependence of the fluctuations reveals a T(-1) dependence of the dephasing time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...