Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 13(5): e1006767, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28545058

RESUMO

How cells control the overall size and growth of membrane-bound organelles is an important unanswered question of cell biology. Fission yeast cells maintain a nuclear size proportional to cellular size, resulting in a constant ratio between nuclear and cellular volumes (N/C ratio). We have conducted a genome-wide visual screen of a fission yeast gene deletion collection for viable mutants altered in their N/C ratio, and have found that defects in both nucleocytoplasmic mRNA transport and lipid synthesis alter the N/C ratio. Perturbing nuclear mRNA export results in accumulation of both mRNA and protein within the nucleus, and leads to an increase in the N/C ratio which is dependent on new membrane synthesis. Disruption of lipid synthesis dysregulates nuclear membrane growth and results in an enlarged N/C ratio. We propose that both properly regulated nucleocytoplasmic transport and nuclear membrane growth are central to the control of nuclear growth and size.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Membrana Celular/genética , Núcleo Celular/genética , Tamanho Celular , Membrana Celular/metabolismo , Genoma Fúngico , Lipídeos/biossíntese , Lipídeos/genética , Membrana Nuclear/genética , RNA Mensageiro/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento
2.
Genes Dev ; 26(4): 369-83, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22345518

RESUMO

Chromatin in the interphase nucleus moves in a constrained random walk. Despite extensive study, the molecular causes of such movement and its impact on DNA-based reactions are unclear. Using high-precision live fluorescence microscopy in budding yeast, we quantified the movement of tagged chromosomal loci to which transcriptional activators or nucleosome remodeling complexes were targeted. We found that local binding of the transcriptional activator VP16, but not of the Gal4 acidic domain, enhances chromatin mobility. The increase in movement did not correlate strictly with RNA polymerase II (PolII) elongation, but could be phenocopied by targeting the INO80 remodeler to the locus. Enhanced chromatin mobility required Ino80's ATPase activity. Consistently, the INO80-dependent remodeling of nucleosomes upon transcriptional activation of the endogenous PHO5 promoter enhanced chromatin movement locally. Finally, increased mobility at a double-strand break was also shown to depend in part on the INO80 complex. This correlated with increased rates of spontaneous gene conversion. We propose that local chromatin remodeling and nucleosome eviction increase large-scale chromatin movements by enhancing the flexibility of the chromatin fiber.


Assuntos
Cromatina/metabolismo , Recombinação Homóloga , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Transporte Proteico
3.
J Cell Biol ; 179(4): 593-600, 2007 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-17998401

RESUMO

A long-standing biological question is how a eukaryotic cell controls the size of its nucleus. We report here that in fission yeast, nuclear size is proportional to cell size over a 35-fold range, and use mutants to show that a 16-fold change in nuclear DNA content does not influence the relative size of the nucleus. Multi-nucleated cells with unevenly distributed nuclei reveal that nuclei surrounded by a greater volume of cytoplasm grow more rapidly. During interphase of the cell cycle nuclear growth is proportional to cell growth, and during mitosis there is a rapid expansion of the nuclear envelope. When the nuclear/cell (N/C) volume ratio is increased by centrifugation or genetic manipulation, nuclear growth is arrested while the cell continues to grow; in contrast, low N/C ratios are rapidly corrected by nuclear growth. We propose that there is a general cellular control linking nuclear growth to cell size.


Assuntos
Núcleo Celular/metabolismo , Tamanho das Organelas , Schizosaccharomyces/citologia , Schizosaccharomyces/crescimento & desenvolvimento , Biomarcadores/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Tamanho Celular , Citoplasma/metabolismo , Corantes Fluorescentes , Proteínas de Fluorescência Verde/metabolismo , Indóis , Microscopia de Vídeo , Mutação , Proteínas Nucleares/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Temperatura
4.
Biophys J ; 90(3): L24-6, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16339888

RESUMO

The dynamic behavior of the decondensed chromatin can be monitored by real-time fluorescence confocal microscopy. It can be observed that different chromosomal sites enjoy different degrees of freedom during a certain period, exploring larger or smaller portions of nuclear volume. Here we measure the accessible surface for two chromosomal sites (yeast telomeres Tel3R and Tel6R) that both exhibit strong preferential association with the nuclear membrane in galactose-containing media, but differ significantly in gene activity. Telomere Tel6R, which harbors an inducible gene with high levels of transcription, explores a much larger surface than the telomere Tel3R, which is adjacent to inactive chromatin. Thus, our results distinguish two perinuclear movements characteristic of different transcriptional state, allowing for a better understanding of the correlation between activity of genes and chromatin dynamics.


Assuntos
Biofísica/métodos , Membrana Nuclear/química , Telômero/ultraestrutura , Sítios de Ligação , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Galactose/química , Microscopia Confocal , Microscopia de Fluorescência , Microscopia de Vídeo , Modelos Estatísticos , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
5.
Novartis Found Symp ; 264: 140-56; discussion 156-65, 227-30, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15773752

RESUMO

The positioning of chromosomal domains within interphase nuclei is thought to contribute to establishment and maintenance of epigenetic control. Using GFP-tagged chromosomal domains, LexA-fusion targeting and live microscopy, we investigated mechanisms through which chromatin can be anchored to the nuclear envelope (NE). We find that a subdomain of the silencing information regulator Sir4 (Sir4(PAD)) and yKu80 are sufficient to tether a chromatin region to the nuclear periphery, independently of their silencing function. Sir4(PAD) interacts with Esc1 (Establishes Silent Chromatin 1), a large acidic protein, localized at the nuclear periphery in the absence of Sir4 and yKu. Sir4 also binds to the periphery through yKu80, whose perinuclear ligand is unidentified. Both pathways are involved in the localization of natural telomeres. To show that silent chromatin can also mediate anchorage, we uncoupled the HMR silent mating-type locus from the chromosome using inducible site-specific recombination. Real-time cytological techniques reveal the position and dynamics of the excised locus. We show that the silent HMR ring associates with the NE in a SIR-dependent manner, while derepressed excised rings move without detectable constraint throughout the nucleoplasm. Dual anchoring pathways thus cooperate to generate high concentrations of SIR proteins in perinuclear foci, which in turn promote repression.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/fisiologia , Núcleo Celular/genética , Cromatina/genética , Proteínas de Ligação a DNA/genética , Saccharomyces cerevisiae/genética
6.
Cell ; 119(7): 955-67, 2004 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-15620354

RESUMO

Epigenetic mechanisms silence the HM mating-type loci in budding yeast. These loci are tightly linked to telomeres, which are also repressed and held together in clusters at the nuclear periphery, much like mammalian heterochromatin. Yeast telomere anchoring can occur in the absence of silent chromatin through the DNA end binding factor Ku. Here we examine whether silent chromatin binds the nuclear periphery independently of telomeres and whether silencing persists in the absence of anchorage. HMR was excised from the chromosome by inducible site-specific recombination and tracked by real-time fluorescence microscopy. Silent rings associate with the nuclear envelope, while nonsilent rings move freely throughout the nucleus. Silent chromatin anchorage requires the action of either Ku or Esc1. In the absence of both proteins, rings move throughout the nucleoplasm yet remain silent. Thus, transcriptional repression can be sustained without perinuclear anchoring.


Assuntos
Núcleo Celular/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Inativação Gênica , Proteínas Repressoras/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Antígenos Nucleares/metabolismo , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Autoantígeno Ku , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/deficiência , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero/metabolismo
7.
Annu Rev Genet ; 38: 305-45, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15568979

RESUMO

Eukaryotic genomes are distributed on linear chromosomes that are grouped together in the nucleus, an organelle separated from the cytoplasm by a characteristic double membrane studded with large proteinaceous pores. The chromatin within chromosomes has an as yet poorly characterized higher-order structure, but in addition to this, chromosomes and specific subchromosomal domains are nonrandomly positioned in nuclei. This review examines functional implications of the long-range organization of the genome in interphase nuclei. A rigorous test of the physiological importance of nuclear architecture is achieved by introducing mutations that compromise both structure and function. Focussing on such genetic approaches, we address general concepts of interphase nuclear order, the role of the nuclear envelope (NE) and lamins, and finally the importance of spatial organization for DNA replication and heritable gene expression.


Assuntos
Núcleo Celular/genética , Animais , Diferenciação Celular , Cromatina , Cromossomos/genética , Replicação do DNA , Expressão Gênica , Humanos , Interfase , Laminas/genética , Laminas/metabolismo , Modelos Biológicos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Telômero/genética , Telômero/metabolismo
8.
EMBO J ; 23(6): 1301-12, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15014445

RESUMO

In budding yeast, the nuclear periphery forms a subcompartment in which telomeres cluster and SIR proteins concentrate. To identify the proteins that mediate chromatin anchorage to the nuclear envelope, candidates were fused to LexA and targeted to an internal GFP-tagged chromosomal locus. Their ability to shift the locus from a random to a peripheral subnuclear position was monitored in living cells. Using fusions that cannot silence, we identify YKu80 and a 312-aa domain of Sir4 (Sir4(PAD)) as minimal anchoring elements, each able to relocalize an internal chromosomal locus to the nuclear periphery. Sir4(PAD)-mediated tethering requires either the Ku complex or Esc1, an acidic protein that is localized to the inner face of the nuclear envelope even in the absence of Ku, Sir4 or Nup133. Finally, we demonstrate that Ku- and Esc1-dependent pathways mediate natural telomere anchoring in vivo. These data provide the first unambiguous identification of protein interactions that are both necessary and sufficient to localize chromatin to the nuclear envelope.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Alelos , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Dimerização , Fase G1 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Microscopia Eletrônica , Proteínas Nucleares/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2 , Sirtuínas/genética , Sirtuínas/metabolismo , Telômero/genética , Telômero/metabolismo
10.
Curr Biol ; 12(24): 2076-89, 2002 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-12498682

RESUMO

BACKGROUND: The positioning of chromosomal domains within interphase nuclei is thought to facilitate transcriptional repression in yeast. Although this is particularly well characterized for telomeres, the molecular basis of their specific subnuclear organization is poorly understood. The use of live fluorescence imaging overcomes limitations of in situ staining on fixed cells and permits the analysis of chromatin dynamics in relation to stages of the cell cycle. RESULTS: We have characterized the dynamics of yeast telomeres and their associated domains of silent chromatin by using rapid time-lapse microscopy. In interphase, native telomeres are highly dynamic but remain within a restricted volume adjacent to the nuclear envelope. This constraint is lost during mitosis. A quantitative analysis of selected mutants shows that the yKu complex is necessary for anchoring some telomeres at the nuclear envelope (NE), whereas the myosin-like proteins Mlp1 and Mlp2 are not. We are able to correlate increased telomeric repression with increased anchoring and show that silent chromatin is tethered to the NE in a Sir-dependent manner in the absence of the yKu complex. Sir-mediated anchoring is S phase specific, while the yKu-mediated pathway functions throughout interphase. Subtelomeric elements of yeast telomere structure influence the relative importance of the yKu- and Sir-dependent mechanisms. CONCLUSIONS: Interphase positioning of telomeres can be achieved through two partially redundant mechanisms. One requires the heterodimeric yKu complex, but not Mlp1 and Mlp2. The second requires Silent information regulators, correlates with transcriptional repression, and is specific to S phase.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/fisiologia , Leveduras/genética , Núcleo Celular/genética , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Interfase/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Mitose/genética , Mutação , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2 , Sirtuínas/genética , Sirtuínas/metabolismo , Telômero/ultraestrutura , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...