Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 7(21): 30018-31, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27145372

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is a devastating incurable premature aging disease caused by accumulation of progerin, a toxic lamin A mutant protein. HGPS patient-derived cells exhibit nuclear morphological abnormalities, altered signaling pathways, genomic instability, and premature senescence. Here we uncover new molecular mechanisms contributing to cellular decline in progeria. We demonstrate that HGPS cells reduce expression of vitamin D receptor (VDR) and DNA repair factors BRCA1 and 53BP1 with progerin accumulation, and that reconstituting VDR signaling via 1α,25-dihydroxyvitamin D3 (1,25D) treatment improves HGPS phenotypes, including nuclear morphological abnormalities, DNA repair defects, and premature senescence. Importantly, we discovered that the 1,25D/VDR axis regulates LMNA gene expression, as well as expression of DNA repair factors. 1,25D dramatically reduces progerin production in HGPS cells, while stabilizing BRCA1 and 53BP1, two key factors for genome integrity. Vitamin D/VDR axis emerges as a new target for treatment of HGPS and potentially other lamin-related diseases exhibiting VDR deficiency and genomic instability. Because progerin expression increases with age, maintaining vitamin D/VDR signaling could keep the levels of progerin in check during physiological aging.


Assuntos
Senilidade Prematura/metabolismo , Calcitriol/farmacologia , Lamina Tipo A/metabolismo , Progéria/metabolismo , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Vitaminas/farmacologia , Senilidade Prematura/genética , Calcitriol/uso terapêutico , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Regulação para Baixo , Fibroblastos , Imunofluorescência , Regulação da Expressão Gênica , Instabilidade Genômica , Humanos , Lamina Tipo A/genética , Mutação , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Fenótipo , Cultura Primária de Células , Progéria/tratamento farmacológico , Progéria/genética , Interferência de RNA , RNA Interferente Pequeno , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/metabolismo , Vitaminas/uso terapêutico
2.
Nucleus ; 4(5): 410-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24153156

RESUMO

Over 300 mutations in the LMNA gene, encoding A-type lamins, are associated with 15 human degenerative disorders and premature aging syndromes. Although genomic instability seems to contribute to the pathophysiology of some laminopathies, there is limited information about what mutations cause genomic instability and by which molecular mechanisms. Mouse embryonic fibroblasts depleted of A-type lamins or expressing mutants lacking exons 8-11 (Lmna(Δ8-11/Δ8-11)) exhibit alterations in telomere biology and DNA repair caused by cathepsin L-mediated degradation of 53BP1 and reduced expression of BRCA1 and RAD51. Thus, a region encompassing exons 8-11 seems essential for genome integrity. Given that deletion of lamin A exon 9 in the mouse (Lmna(Δ9/Δ9)) results in a progeria phenotype, we tested if this domain is important for genome integrity. Lmna(Δ9/Δ9) MEFs exhibit telomere shortening and heterochromatin alterations but do not activate cathepsin L-mediated degradation of 53BP1 and maintain expression of BRCA1 and RAD51. Accordingly, Lmna(Δ9/Δ9) MEFs do not present genomic instability, and expression of mutant lamin A Δexon9 in lamin-depleted cells restores DNA repair factors levels and partially rescues nuclear abnormalities. These data reveal that the domain encoded by exon 9 is important to maintain telomere homeostasis and heterochromatin structure but does not play a role in DNA repair, thus pointing to other exons in the lamin A tail as responsible for the genomic instability phenotype in Lmna(Δ8-11/Δ8-11) mice. Our study also suggests that the levels of DNA repair factors 53BP1, BRCA1 and RAD51 could potentially serve as biomarkers to identify laminopathies that present with genomic instability.


Assuntos
Cromatina/genética , Éxons/genética , Instabilidade Genômica/genética , Lamina Tipo A/genética , Deleção de Sequência/genética , Telômero/genética , Animais , Proteína BRCA1/metabolismo , Linhagem Celular , Cromatina/química , Cromatina/patologia , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Camundongos , Rad51 Recombinase/metabolismo , Telômero/patologia , Encurtamento do Telômero/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
3.
Cell Cycle ; 12(23): 3629-39, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24091731

RESUMO

BRCA1 and 53BP1 play decisive roles in the choice of DNA double-strand break repair mechanisms. BRCA1 promotes DNA end resection and homologous recombination (HR) during S/G 2 phases of the cell cycle, while 53BP1 inhibits end resection and facilitates non-homologous end-joining (NHEJ), primarily during G 1. This competitive relationship is critical for genome integrity during cell division. However, their relationship in the many cells in our body that are not cycling is unknown. We discovered profound differences in 53BP1 and BRCA1 regulation between cycling and non-cycling cells. Cellular growth arrest results in transcriptional downregulation of BRCA1 and activation of cathepsin-L (CTSL)-mediated degradation of 53BP1. Accordingly, growth-arrested cells do not form BRCA1 or 53BP1 ionizing radiation-induced foci (IRIF). Interestingly, cell cycle re-entry reverts this scenario, with upregulation of BRCA1, downregulation of CTSL, stabilization of 53BP1, and 53BP1 IRIF formation throughout the cycle, indicating that BRCA1 and 53BP1 are important in replicating cells and dispensable in non-cycling cells. We show that CTSL-mediated degradation of 53BP1, previously associated with aggressive breast cancers, is an endogenous mechanism of non-cycling cells to balance NHEJ (53BP1) and HR (BRCA1). Breast cancer cells exploit this mechanism to ensure genome stability and viability, providing an opportunity for targeted therapy.


Assuntos
Proteína BRCA1/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína BRCA1/genética , Catepsina L/antagonistas & inibidores , Catepsina L/genética , Catepsina L/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades , Replicação do DNA/efeitos dos fármacos , Células HeLa , Humanos , Hidroxiureia/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucina/análogos & derivados , Leucina/farmacologia , Células MCF-7 , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
4.
J Cell Biol ; 200(2): 187-202, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23337117

RESUMO

Loss of 53BP1 rescues BRCA1 deficiency and is associated with BRCA1-deficient and triple-negative breast cancers (TNBC) and with resistance to genotoxic drugs. The mechanisms responsible for decreased 53BP1 transcript and protein levels in tumors remain unknown. Here, we demonstrate that BRCA1 loss activates cathepsin L (CTSL)-mediated degradation of 53BP1. Activation of this pathway rescued homologous recombination repair and allowed BRCA1-deficient cells to bypass growth arrest. Importantly, depletion or inhibition of CTSL with vitamin D or specific inhibitors stabilized 53BP1 and increased genomic instability in response to radiation and poly(adenosine diphosphate-ribose) polymerase inhibitors, compromising proliferation. Analysis of human breast tumors identified nuclear CTSL as a positive biomarker for TNBC, which correlated inversely with 53BP1. Importantly, nuclear levels of CTSL, vitamin D receptor, and 53BP1 emerged as a novel triple biomarker signature for stratification of patients with BRCA1-mutated tumors and TNBC, with potential predictive value for drug response. We identify here a novel pathway with prospective relevance for diagnosis and customization of breast cancer therapy.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Catepsina L/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Catepsina L/genética , Linhagem Celular Tumoral , Reparo do DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Mutação em Linhagem Germinativa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
5.
EMBO J ; 30(16): 3383-96, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21750527

RESUMO

Genomic instability due to telomere dysfunction and defective repair of DNA double-strand breaks (DSBs) is an underlying cause of ageing-related diseases. 53BP1 is a key factor in DNA DSBs repair and its deficiency is associated with genomic instability and cancer progression. Here, we uncover a novel pathway regulating the stability of 53BP1. We demonstrate an unprecedented role for the cysteine protease Cathepsin L (CTSL) in the degradation of 53BP1. Overexpression of CTSL in wild-type fibroblasts leads to decreased 53BP1 protein levels and changes in its cellular distribution, resulting in defective repair of DNA DSBs. Importantly, we show that the defects in DNA repair associated with 53BP1 deficiency upon loss of A-type lamins are due to upregulation of CTSL. Furthermore, we demonstrate that treatment with vitamin D stabilizes 53BP1 and promotes DNA DSBs repair via inhibition of CTSL, providing an as yet unsuspected link between vitamin D action and DNA repair. Given that CTSL upregulation is a hallmark of cancer and progeria, regulation of this pathway could be of great therapeutic significance for these diseases.


Assuntos
Catepsina L/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Lamina Tipo A/fisiologia , Vitamina D/fisiologia , Animais , Calcitriol/farmacologia , Catepsina L/antagonistas & inibidores , Catepsina L/biossíntese , Catepsina L/genética , Linhagem Celular , Precursores Enzimáticos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Leupeptinas/farmacologia , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas Recombinantes de Fusão/fisiologia , Especificidade da Espécie , Transfecção , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...