Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652695

RESUMO

Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat (LTR) retrotransposon CRM (centromeric retrotransposon of maize), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. By contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared to the CRM elements. Using a phylogenetically guided approach we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species.

2.
Chromosome Res ; 32(1): 3, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403686

RESUMO

Centromere is the chromosomal site of kinetochore assembly and microtubule attachment for chromosome segregation. Given its importance, markers that allow specific labeling of centromeric chromatin throughout the cell cycle and across all chromosome types are sought for facilitating various centromere studies. Antibodies against the N-terminal region of CENH3 are commonly used for this purpose, since CENH3 is the near-universal marker of functional centromeres. However, because the N-terminal region of CENH3 is highly variable among plant species, antibodies directed against this region usually function only in a small group of closely related species. As a more versatile alternative, we present here antibodies targeted to the conserved domains of two outer kinetochore proteins, KNL1 and NDC80. Sequence comparison of these domains across more than 350 plant species revealed a high degree of conservation, particularly within a six amino acid motif, FFGPVS in KNL1, suggesting that both antibodies would function in a wide range of plant species. This assumption was confirmed by immunolabeling experiments in angiosperm (monocot and dicot) and gymnosperm species, including those with mono-, holo-, and meta-polycentric chromosomes. In addition to centromere labeling on condensed chromosomes during cell division, both antibodies detected the corresponding regions in the interphase nuclei of most species tested. These results demonstrated that KNL1 and NDC80 are better suited for immunolabeling centromeres than CENH3, because antibodies against these proteins offer incomparably greater versatility across different plant species which is particularly convenient for studying the organization and function of the centromere in non-model species.


Assuntos
Centrômero , Cinetocoros , Proteínas de Plantas , Sequência de Aminoácidos , Cromatina , Segregação de Cromossomos , Proteínas de Plantas/genética
3.
Nat Commun ; 14(1): 3502, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311740

RESUMO

The centromere is the chromosome region where microtubules attach during cell division. In contrast to monocentric chromosomes with one centromere, holocentric species usually distribute hundreds of centromere units along the entire chromatid. We assembled the chromosome-scale reference genome and analyzed the holocentromere and (epi)genome organization of the lilioid Chionographis japonica. Remarkably, each of its holocentric chromatids consists of only 7 to 11 evenly spaced megabase-sized centromere-specific histone H3-positive units. These units contain satellite arrays of 23 and 28 bp-long monomers capable of forming palindromic structures. Like monocentric species, C. japonica forms clustered centromeres in chromocenters at interphase. In addition, the large-scale eu- and heterochromatin arrangement differs between C. japonica and other known holocentric species. Finally, using polymer simulations, we model the formation of prometaphase line-like holocentromeres from interphase centromere clusters. Our findings broaden the knowledge about centromere diversity, showing that holocentricity is not restricted to species with numerous and small centromere units.


Assuntos
Proteínas de Ciclo Celular , Centrômero , Centrômero/genética , Divisão Celular , Cromátides , Heterocromatina/genética
4.
Proc Natl Acad Sci U S A ; 120(21): e2300877120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192159

RESUMO

The segregation of chromosomes depends on the centromere. Most species are monocentric, with the centromere restricted to a single region per chromosome. In some organisms, the monocentric organization changed to holocentric, in which the centromere activity is distributed over the entire chromosome length. However, the causes and consequences of this transition are poorly understood. Here, we show that the transition in the genus Cuscuta was associated with dramatic changes in the kinetochore, a protein complex that mediates the attachment of chromosomes to microtubules. We found that in holocentric Cuscuta species, the KNL2 genes were lost; the CENP-C, KNL1, and ZWINT1 genes were truncated; the centromeric localization of CENH3, CENP-C, KNL1, MIS12, and NDC80 proteins was disrupted; and the spindle assembly checkpoint (SAC) degenerated. Our results demonstrate that holocentric Cuscuta species lost the ability to form a standard kinetochore and do not employ SAC to control the attachment of microtubules to chromosomes.


Assuntos
Cuscuta , Cinetocoros , Centrômero/genética , Estruturas Cromossômicas , Microtúbulos/metabolismo , Segregação de Cromossomos
5.
Nature ; 615(7953): 652-659, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890232

RESUMO

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Assuntos
Produtos Agrícolas , Diploide , Variação Genética , Genoma de Planta , Genômica , Melhoramento Vegetal , Proteínas de Plantas , Vicia faba , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Variações do Número de Cópias de DNA/genética , DNA Satélite/genética , Amplificação de Genes/genética , Genes de Plantas/genética , Variação Genética/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Geografia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinação Genética , Retroelementos/genética , Sementes/anatomia & histologia , Sementes/genética , Vicia faba/anatomia & histologia , Vicia faba/genética , Vicia faba/metabolismo
6.
PLoS Genet ; 19(2): e1010633, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36735726

RESUMO

Centromeres in the legume genera Pisum and Lathyrus exhibit unique morphological characteristics, including extended primary constrictions and multiple separate domains of centromeric chromatin. These so-called metapolycentromeres resemble an intermediate form between monocentric and holocentric types, and therefore provide a great opportunity for studying the transitions between different types of centromere organizations. However, because of the exceedingly large and highly repetitive nature of metapolycentromeres, highly contiguous assemblies needed for these studies are lacking. Here, we report on the assembly and analysis of a 177.6 Mb region of pea (Pisum sativum) chromosome 6, including the 81.6 Mb centromere region (CEN6) and adjacent chromosome arms. Genes, DNA methylation profiles, and most of the repeats were uniformly distributed within the centromere, and their densities in CEN6 and chromosome arms were similar. The exception was an accumulation of satellite DNA in CEN6, where it formed multiple arrays up to 2 Mb in length. Centromeric chromatin, characterized by the presence of the CENH3 protein, was predominantly associated with arrays of three different satellite repeats; however, five other satellites present in CEN6 lacked CENH3. The presence of CENH3 chromatin was found to determine the spatial distribution of the respective satellites during the cell cycle. Finally, oligo-FISH painting experiments, performed using probes specifically designed to label the genomic regions corresponding to CEN6 in Pisum, Lathyrus, and Vicia species, revealed that metapolycentromeres evolved via the expansion of centromeric chromatin into neighboring chromosomal regions and the accumulation of novel satellite repeats. However, in some of these species, centromere evolution also involved chromosomal translocations and centromere repositioning.


Assuntos
Cromossomos Humanos Par 6 , Pisum sativum , Humanos , Pisum sativum/genética , Centrômero/genética , Cromatina/genética , DNA Satélite/genética
7.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35926507

RESUMO

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Assuntos
Centrômero , Cyperaceae , Animais , Centrômero/genética , Cyperaceae/genética , Evolução Molecular , Cariótipo , Plantas/genética
8.
Comput Struct Biotechnol J ; 19: 2179-2189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995911

RESUMO

Repeat-rich regions of higher plant genomes are usually associated with constitutive heterochromatin, a specific type of chromatin that forms tightly packed nuclear chromocenters and chromosome bands. There is a large body of cytogenetic evidence that these chromosome regions are often composed of tandemly organized satellite DNA. However, comparatively little is known about the sequence arrangement within heterochromatic regions, which are difficult to assemble due to their repeated nature. Here, we explore long-range sequence organization of heterochromatin regions containing the major satellite repeat CUS-TR24 in the holocentric plant Cuscuta europaea. Using a combination of ultra-long read sequencing with assembly-free sequence analysis, we reveal the complex structure of these loci, which are composed of short arrays of CUS-TR24 interrupted frequently by emerging simple sequence repeats and targeted insertions of a specific lineage of LINE retrotransposons. These data suggest that the organization of satellite repeats constituting heterochromatic chromosome bands can be more complex than previously envisioned, and demonstrate that heterochromatin organization can be efficiently investigated without the need for genome assembly.

9.
New Phytol ; 229(4): 2365-2377, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33090498

RESUMO

The parasitic genus Cuscuta (Convolvulaceae) is exceptional among plants with respect to centromere organization, including both monocentric and holocentric chromosomes, and substantial variation in genome size and chromosome number. We investigated 12 species representing the diversity of the genus in a phylogenetic context to reveal the molecular and evolutionary processes leading to diversification of their genomes. We measured genome sizes and investigated karyotypes and centromere organization using molecular cytogenetic techniques. We also performed low-pass whole genome sequencing and comparative analysis of repetitive DNA composition. A remarkable 102-fold variation in genome sizes (342-34 734 Mbp/1C) was detected for monocentric Cuscuta species, while genomes of holocentric species were of moderate sizes (533-1545 Mbp/1C). The genome size variation was primarily driven by the differential accumulation of LTR-retrotransposons and satellite DNA. The transition to holocentric chromosomes in the subgenus Cuscuta was associated with loss of histone H2A phosphorylation and elimination of centromeric retrotransposons. In addition, basic chromosome number of holocentric species (x = 7) was smaller than in monocentrics (x = 15 or 16). We demonstrated that the transition to holocentricity in Cuscuta was accompanied by significant changes in epigenetic marks, chromosome number and the repetitive DNA sequence composition.


Assuntos
Cuscuta , Centrômero/genética , Cuscuta/genética , Evolução Molecular , Genoma de Planta/genética , Estilo de Vida , Filogenia
10.
Nat Plants ; 6(11): 1325-1329, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33077876

RESUMO

Given the 2,400-fold range of genome sizes (0.06-148.9 Gbp (gigabase pair)) of seed plants (angiosperms and gymnosperms) with a broadly similar gene content (amounting to approximately 0.03 Gbp), the repeat-sequence content of the genome might be expected to increase with genome size, resulting in the largest genomes consisting almost entirely of repetitive sequences. Here we test this prediction, using the same bioinformatic approach for 101 species to ensure consistency in what constitutes a repeat. We reveal a fundamental change in repeat turnover in genomes above around 10 Gbp, such that species with the largest genomes are only about 55% repetitive. Given that genome size influences many plant traits, habits and life strategies, this fundamental shift in repeat dynamics is likely to affect the evolutionary trajectory of species lineages.


Assuntos
Genoma de Planta/genética , Sequências Repetitivas de Ácido Nucleico/genética , Cycadopsida/genética , Citometria de Fluxo , Magnoliopsida/genética , Filogenia , Retroelementos/genética
11.
Nat Protoc ; 15(11): 3745-3776, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33097925

RESUMO

RepeatExplorer2 is a novel version of a computational pipeline that uses graph-based clustering of next-generation sequencing reads for characterization of repetitive DNA in eukaryotes. The clustering algorithm facilitates repeat identification in any genome by using relatively small quantities of short sequence reads, and additional tools within the pipeline perform automatic annotation and quantification of the identified repeats. The pipeline is integrated into the Galaxy platform, which provides a user-friendly web interface for script execution and documentation of the results. Compared to the original version of the pipeline, RepeatExplorer2 provides automated annotation of transposable elements, identification of tandem repeats and enhanced visualization of analysis results. Here, we present an overview of the RepeatExplorer2 workflow and provide procedures for its application to (i) de novo repeat identification in a single species, (ii) comparative repeat analysis in a set of species, (iii) development of satellite DNA probes for cytogenetic experiments and (iv) identification of centromeric repeats based on ChIP-seq data. Each procedure takes approximately 2 d to complete. RepeatExplorer2 is available at https://repeatexplorer-elixir.cerit-sc.cz .


Assuntos
DNA/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Animais , Análise por Conglomerados , DNA/química , Sondas de DNA/química , Sondas de DNA/genética , Elementos de DNA Transponíveis , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Sequências Repetitivas de Ácido Nucleico , Software
12.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429054

RESUMO

Centromeres are essential for proper chromosome segregation to the daughter cells during mitosis and meiosis. Chromosomes of most eukaryotes studied so far have regional centromeres that form primary constrictions on metaphase chromosomes. These monocentric chromosomes vary from point centromeres to so-called "meta-polycentromeres", with multiple centromere domains in an extended primary constriction, as identified in Pisum and Lathyrus species. However, in various animal and plant lineages centromeres are distributed along almost the entire chromosome length. Therefore, they are called holocentromeres. In holocentric plants, centromere-specific proteins, at which spindle fibers usually attach, are arranged contiguously (line-like), in clusters along the chromosomes or in bands. Here, we summarize findings of ultrastructural investigations using immunolabeling with centromere-specific antibodies and super-resolution microscopy to demonstrate the structural diversity of plant centromeres. A classification of the different centromere types has been suggested based on the distribution of spindle attachment sites. Based on these findings we discuss the possible evolution and advantages of holocentricity, and potential strategies to segregate holocentric chromosomes correctly.


Assuntos
Centrômero/metabolismo , Microscopia , Plantas/metabolismo , Ciclo Celular , Cromossomos de Plantas/metabolismo , Evolução Molecular
13.
Mol Biol Evol ; 37(8): 2341-2356, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259249

RESUMO

Satellite repeats are major sequence constituents of centromeres in many plant and animal species. Within a species, a single family of satellite sequences typically occupies centromeres of all chromosomes and is absent from other parts of the genome. Due to their common origin, sequence similarities exist among the centromere-specific satellites in related species. Here, we report a remarkably different pattern of centromere evolution in the plant tribe Fabeae, which includes genera Pisum, Lathyrus, Vicia, and Lens. By immunoprecipitation of centromeric chromatin with CENH3 antibodies, we identified and characterized a large and diverse set of 64 families of centromeric satellites in 14 species. These families differed in their nucleotide sequence, monomer length (33-2,979 bp), and abundance in individual species. Most families were species-specific, and most species possessed multiple (2-12) satellites in their centromeres. Some of the repeats that were shared by several species exhibited promiscuous patterns of centromere association, being located within CENH3 chromatin in some species, but apart from the centromeres in others. Moreover, FISH experiments revealed that the same family could assume centromeric and noncentromeric positions even within a single species. Taken together, these findings suggest that Fabeae centromeres are not shaped by the coevolution of a single centromeric satellite with its interacting CENH3 proteins, as proposed by the centromere drive model. This conclusion is also supported by the absence of pervasive adaptive evolution of CENH3 sequences retrieved from Fabeae species.


Assuntos
Centrômero/química , DNA Satélite/química , Fabaceae/genética , Variação Genética , Seleção Genética , Especificidade da Espécie
14.
Plant J ; 101(2): 484-500, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31559657

RESUMO

Amplification of monomer sequences into long contiguous arrays is the main feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in its investigation because these arrays are in principle difficult to assemble. Here we explore an alternative, assembly-free approach that utilizes ultra-long Oxford Nanopore reads to infer the length distribution of satellite repeat arrays, their association with other repeats and the prevailing sequence periodicities. Using the satellite DNA-rich legume plant Lathyrus sativus as a model, we demonstrated this approach by analyzing 11 major satellite repeats using a set of nanopore reads ranging from 30 to over 200 kb in length and representing 0.73× genome coverage. We found surprising differences between the analyzed repeats because only two of them were predominantly organized in long arrays typical for satellite DNA. The remaining nine satellites were found to be derived from short tandem arrays located within LTR-retrotransposons that occasionally expanded in length. While the corresponding LTR-retrotransposons were dispersed across the genome, this array expansion occurred mainly in the primary constrictions of the L. sativus chromosomes, which suggests that these genome regions are favourable for satellite DNA accumulation.


Assuntos
DNA Satélite , Frequência do Gene , Nanoporos , Retroelementos , Sequências de Repetição em Tandem , Centrômero , Cromossomos de Plantas , DNA de Plantas/genética , Evolução Molecular , Genoma de Planta , Heterocromatina , Lathyrus/genética
15.
Nat Genet ; 51(9): 1411-1422, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31477930

RESUMO

We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel's original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Fabaceae/genética , Genoma de Planta , Pisum sativum/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Fabaceae/classificação , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica , Fenótipo , Filogenia , Padrões de Referência , Sequências Repetitivas de Ácido Nucleico , Proteínas de Armazenamento de Sementes/genética , Sequenciamento Completo do Genoma
16.
Mob DNA ; 10: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30622655

RESUMO

BACKGROUND: Plant LTR-retrotransposons are classified into two superfamilies, Ty1/copia and Ty3/gypsy. They are further divided into an enormous number of families which are, due to the high diversity of their nucleotide sequences, usually specific to a single or a group of closely related species. Previous attempts to group these families into broader categories reflecting their phylogenetic relationships were limited either to analyzing a narrow range of plant species or to analyzing a small numbers of elements. Furthermore, there is no reference database that allows for similarity based classification of LTR-retrotransposons. RESULTS: We have assembled a database of retrotransposon encoded polyprotein domains sequences extracted from 5410 Ty1/copia elements and 8453 Ty3/gypsy elements sampled from 80 species representing major groups of green plants (Viridiplantae). Phylogenetic analysis of the three most conserved polyprotein domains (RT, RH and INT) led to dividing Ty1/copia and Ty3/gypsy retrotransposons into 16 and 14 lineages respectively. We also characterized various features of LTR-retrotransposon sequences including additional polyprotein domains, extra open reading frames and primer binding sites, and found that the occurrence and/or type of these features correlates with phylogenies inferred from the three protein domains. CONCLUSIONS: We have established an improved classification system applicable to LTR-retrotransposons from a wide range of plant species. This system reflects phylogenetic relationships as well as distinct sequence and structural features of the elements. A comprehensive database of retrotransposon protein domains (REXdb) that reflects this classification provides a reference for efficient and unified annotation of LTR-retrotransposons in plant genomes. Access to REXdb related tools is implemented in the RepeatExplorer web server (https://repeatexplorer-elixir.cerit-sc.cz/) or using a standalone version of REXdb that can be downloaded seaparately from RepeatExplorer web page (http://repeatexplorer.org/).

17.
Front Plant Sci ; 10: 1799, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038700

RESUMO

The centromere is the region on a chromosome where the kinetochore assembles and spindle microtubules attach during mitosis and meiosis. In the vast majority of eukaryotes, the centromere position is determined epigenetically by the presence of the centromere-specific histone H3 variant CENH3. In species with monocentric chromosomes, CENH3 is confined to a single chromosomal region corresponding to the primary constriction on metaphase chromosomes. By contrast, in holocentrics, CENH3 (and thus centromere activity) is distributed along the entire chromosome length. Here, we report a unique pattern of CENH3 distribution in the holocentric plant Cuscuta europaea. This species expressed two major variants of CENH3, both of which were deposited into one to three discrete regions per chromosome, whereas the rest of the chromatin appeared to be devoid of CENH3. The two CENH3 variants fully co-localized, and their immunodetection signals overlapped with the positions of DAPI-positive heterochromatic bands containing the highly amplified satellite repeat CUS-TR24. This CENH3 distribution pattern contrasted with the distribution of the mitotic spindle microtubules, which attached at uniform density along the entire chromosome length. This distribution of spindle attachment sites proves the holocentric nature of C. europaea chromosomes and also suggests that, in this species, CENH3 either lost its function or acts in parallel to an additional CENH3-free mechanism of kinetochore positioning.

18.
Sci Rep ; 8(1): 5838, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643436

RESUMO

Satellite DNA, a class of repetitive sequences forming long arrays of tandemly repeated units, represents substantial portions of many plant genomes yet remains poorly characterized due to various methodological obstacles. Here we show that the genome of the field bean (Vicia faba, 2n = 12), a long-established model for cytogenetic studies in plants, contains a diverse set of satellite repeats, most of which remained concealed until their present investigation. Using next-generation sequencing combined with novel bioinformatics tools, we reconstructed consensus sequences of 23 novel satellite repeats representing 0.008-2.700% of the genome and mapped their distribution on chromosomes. We found that in addition to typical satellites with monomers hundreds of nucleotides long, V. faba contains a large number of satellite repeats with unusually long monomers (687-2033 bp), which are predominantly localized in pericentromeric regions. Using chromatin immunoprecipitation with CenH3 antibody, we revealed an extraordinary diversity of centromeric satellites, consisting of seven repeats with chromosome-specific distribution. We also found that in spite of their different nucleotide sequences, all centromeric repeats are replicated during mid-S phase, while most other satellites are replicated in the first part of late S phase, followed by a single family of FokI repeats representing the latest replicating chromatin.


Assuntos
Período de Replicação do DNA/genética , DNA de Plantas/genética , DNA Satélite/genética , Genoma de Planta/genética , Vicia faba/genética , Centrômero/metabolismo , Imunoprecipitação da Cromatina , Mapeamento Cromossômico/métodos , Biologia Computacional , DNA de Plantas/metabolismo , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA , Vicia faba/metabolismo
19.
Cytogenet Genome Res ; 152(3): 158-165, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28810257

RESUMO

Whole-genome shotgun reads were analyzed to determine the repeat sequence composition in the genome of black mustard, Brassica nigra (L.) Koch. The analysis showed that satellite DNA sequences are very abundant in the black mustard genome. The distribution pattern of 7 new tandem repeats (BnSAT13, BnSAT28, BnSAT68, BnSAT76, BnSAT114, BnSAT180, and BnSAT200) on black mustard chromosomes was visualized using fluorescence in situ hybridization (FISH). The FISH signals of BnSAT13 and BnSAT76 provided useful cytogenetic markers; their position and fluorescence intensity allowed for unambiguous identification of all 8 somatic metaphase chromosomes. A karyotype showing the location and fluorescence intensity of these tandem repeat sequences together with the position of rDNAs and centromeric retrotransposons of Brassica (CRB) was constructed. The establishment of the FISH-based karyotype in B. nigra provides valuable information that can be used in detailed analyses of B. nigra accessions and derived allopolyploid Brassica species containing the B genome.


Assuntos
DNA de Plantas/genética , Hibridização in Situ Fluorescente/métodos , Cariótipo , Mostardeira/genética , Sequências de Repetição em Tandem/genética , Centrômero , Cromossomos de Plantas/genética , Cromossomos de Plantas/ultraestrutura , DNA Ribossômico/genética , DNA Satélite/genética , Marcadores Genéticos , Genoma de Planta , Metáfase , Microscopia de Fluorescência , Retroelementos
20.
Nucleic Acids Res ; 45(12): e111, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28402514

RESUMO

Satellite DNA is one of the major classes of repetitive DNA, characterized by tandemly arranged repeat copies that form contiguous arrays up to megabases in length. This type of genomic organization makes satellite DNA difficult to assemble, which hampers characterization of satellite sequences by computational analysis of genomic contigs. Here, we present tandem repeat analyzer (TAREAN), a novel computational pipeline that circumvents this problem by detecting satellite repeats directly from unassembled short reads. The pipeline first employs graph-based sequence clustering to identify groups of reads that represent repetitive elements. Putative satellite repeats are subsequently detected by the presence of circular structures in their cluster graphs. Consensus sequences of repeat monomers are then reconstructed from the most frequent k-mers obtained by decomposing read sequences from corresponding clusters. The pipeline performance was successfully validated by analyzing low-pass genome sequencing data from five plant species where satellite DNA was previously experimentally characterized. Moreover, novel satellite repeats were predicted for the genome of Vicia faba and three of these repeats were verified by detecting their sequences on metaphase chromosomes using fluorescence in situ hybridization.


Assuntos
Mapeamento Cromossômico/métodos , DNA de Plantas/genética , DNA Satélite/genética , Genoma de Planta , Software , Sequência de Bases , Análise por Conglomerados , Gráficos por Computador , Sequência Consenso , Cyperaceae/genética , DNA Satélite/classificação , Hibridização in Situ Fluorescente , Magnoliopsida/genética , Metáfase , Pisum sativum/genética , Análise de Sequência de DNA , Vicia faba/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...