Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(12): 8294-8301, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29532835

RESUMO

To better understand the electrode kinetics of oxygen reduction and oxidation of gadolinia doped ceria (GDC), the electrochemical properties of platinum electrodes on GDC single crystals and polycrystalline samples were investigated with geometrically well-defined microelectrodes. For comparison measurements were also performed on polycrystalline samples using platinum interdigital electrodes in order to access the effect of the electrode geometry on the electrochemical properties. The transport properties were characterised using impedance spectroscopy, allowing to separate the transport processes of the electrode and the electrolyte. Evaluation of the temperature dependence shows activation energies of 0.77 eV for bulk transport and 1.03 eV for the electrode exchange. Oxygen partial pressure dependent measurements in a reducing atmosphere reveal a strong increase in activation energy due to electronic defect formation. A distinct chemical capacitance is observed in the electrode impedance for all sample types independent of the electrode geometry. While this chemical capacitance is only visible in the electrolyte contribution for the samples measured with interdigital electrodes, for the samples investigated with microelectrodes no chemical capacitance is observed in the electrolyte contribution of the impedance. As the chemical capacitance is related to stoichiometry changes in the electrolyte materials, the results confirm the non-uniform potential distribution occurring at a microelectrode, which results in a vanishing lateral potential gradient and therefore in a negligible stoichiometry gradient inside the electrolyte at a distance from the microelectrode.

2.
ACS Catal ; 6(9): 5865-5872, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27668125

RESUMO

A series of microstructured, supported platinum (Pt) catalyst films (supported on single-crystal yttria-stabilized zirconia) and an appropriate Pt catalyst reference system (supported on single-crystal alumina) were fabricated using pulsed laser deposition and ion-beam etching. The thin films exhibit area-specific lengths of the three-phase boundary (length of three-phase boundary between the Pt, support, and gas phase divided by the superficial area of the sample) that vary over 4 orders of magnitude from 4.5 × 102 to 4.9 × 106 m m-2, equivalent to structural length scales of 0.2 µm to approximately 9000 µm. The catalyst films have been characterized using X-ray diffraction, atomic force microscopy, high-resolution scanning electron microscopy, and catalytic activity tests employing the carbon monoxide oxidation reaction. When Pt is supported on yttria-stabilized zirconia, the reaction rate clearly depends upon the area-specific length of the three-phase boundary, l(tpb). A similar relationship is not observed when Pt is supported on alumina. We suggest that the presence of the three-phase boundary provides an extra channel of oxygen supply to the Pt through diffusion in or on the yttria-stabilized zirconia support coupled with surface diffusion across the Pt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...