Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(21): 8291-8299, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743800

RESUMO

Nanoparticles are produced at accelerating rates, are increasingly integrated into scientific and industrial applications, and are widely discharged into the environment. Analytical techniques are required to characterize parameters such as particle number concentrations, mass and size distributions, molecular and elemental compositions, and particle stability. This is not only relevant to investigate their utility for various industrial or medical applications and for controlling the manufacturing processes but also to assess toxicity and environmental fate. Different analytical strategies aim to characterize certain facets of particles but are difficult to combine to retrieve relevant parameters coherently and to provide a more comprehensive picture. In this work, we demonstrate the first online hyphenation of optofluidic force induction (OF2i) with Raman spectroscopy and inductively coupled plasma-time-of-flight-mass spectrometry (ICP-TOFMS) to harness their complementary technology-specific advantages and to promote comprehensive particle characterizations. We optically trapped individual particles on a weakly focused vortex laser beam by aligning a microfluidic flow antiparallelly to the laser propagation direction. The position of particles in this optical trap depended on the hydrodynamic diameter and therefore enabled size calibration as well as matrix elimination. Additionally, laser light scattered on particles was analyzed in a single particle (SP) Raman spectroscopy setup for the identification of particulate species and phases. Finally, particles were characterized regarding elemental composition and their distributions in mass and size using SP ICP-TOFMS. In a proof of concept, we analyzed polystyrene-based microplastic and TiO2 nanoparticles and demonstrated the opportunities provided through the coupling of OF2i with SP Raman and SP ICP-TOFMS.

2.
Anal Bioanal Chem ; 415(21): 5181-5191, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392213

RESUMO

Manufacturers of nanoparticle-based products rely on detailed information about critical process parameters, such as particle size and size distributions, concentration, and material composition, which directly reflect the quality of the final product. These process parameters are often obtained using offline characterization techniques that cannot provide the temporal resolution to detect dynamic changes in particle ensembles during a production process. To overcome this deficiency, we have recently introduced Optofluidic Force Induction (OF2i) for optical real-time counting with single particle sensitivity and high throughput. In this paper, we apply OF2i to highly polydisperse and multi modal particle systems, where we also monitor evolutionary processes over large time scales. For oil-in-water emulsions we detect in real time the transition between high-pressure homogenization states. For silicon carbide nanoparticles, we exploit the dynamic OF2i measurement capabilities to introduce a novel process feedback parameter based on the dissociation of particle agglomerates. Our results demonstrate that OF2i provides a versatile workbench for process feedback in a wide range of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...