Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009656

RESUMO

A nematic phase breaks the point-group symmetry of the crystal lattice and is known to emerge in correlated materials. Here we report the observation of an intra-unit-cell nematic order and associated Fermi surface deformation in the kagome metal ScV6Sn6. Using scanning tunnelling microscopy and scanning tunnelling spectroscopy, we reveal a stripe-like nematic order breaking the crystal rotational symmetry within the kagome lattice itself. Moreover, we identify a set of Van Hove singularities adhering to the kagome-layer electrons, which appear along one direction of the Brillouin zone and are annihilated along other high-symmetry directions, revealing rotational symmetry breaking. Via detailed spectroscopic maps, we further observe an elliptical deformation of the Fermi surface, which provides direct evidence for an electronically mediated nematic order. Our work not only bridges the gap between electronic nematicity and kagome physics but also sheds light on the potential mechanism for realizing symmetry-broken phases in correlated electron systems.

2.
Phys Rev Lett ; 132(20): 206601, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829096

RESUMO

We extend the notion of topologically protected semi-metallic band crossings to hyperbolic lattices in a negatively curved plane. Because of their distinct translation group structure, such lattices are associated with a high-dimensional reciprocal space. In addition, they support non-Abelian Bloch states which, unlike conventional Bloch states, acquire a matrix-valued Bloch factor under lattice translations. Combining diverse numerical and analytical approaches, we uncover an unconventional scaling in the density of states at low energies, and illuminate a nodal manifold of codimension five in the reciprocal space. The nodal manifold is topologically protected by a nonzero second Chern number, reminiscent of the characterization of Weyl nodes by the first Chern number.

3.
Nature ; 628(8008): 527-533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600389

RESUMO

Topology1-3 and interactions are foundational concepts in the modern understanding of quantum matter. Their nexus yields three important research directions: (1) the competition between distinct interactions, as in several intertwined phases, (2) the interplay between interactions and topology that drives the phenomena in twisted layered materials and topological magnets, and (3) the coalescence of several topological orders to generate distinct novel phases. The first two examples have grown into major areas of research, although the last example remains mostly unexplored, mainly because of the lack of a material platform for experimental studies. Here, using tunnelling microscopy, photoemission spectroscopy and a theoretical analysis, we unveil a 'hybrid' topological phase of matter in the simple elemental-solid arsenic. Through a unique bulk-surface-edge correspondence, we uncover that arsenic features a conjoined strong and higher-order topology that stabilizes a hybrid topological phase. Although momentum-space spectroscopy measurements show signs of topological surface states, real-space microscopy measurements unravel a unique geometry of topologically induced step-edge conduction channels revealed on various natural nanostructures on the surface. Using theoretical models, we show that the existence of gapless step-edge states in arsenic relies on the simultaneous presence of both a non-trivial strong Z2 invariant and a non-trivial higher-order topological invariant, which provide experimental evidence for hybrid topology. Our study highlights pathways for exploring the interplay of different band topologies and harnessing the associated topological conduction channels in engineered quantum or nano-devices.

4.
Nat Phys ; 20(4): 579-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638456

RESUMO

Spontaneously broken symmetries are at the heart of many phenomena of quantum matter and physics more generally. However, determining the exact symmetries that are broken can be challenging due to imperfections such as strain, in particular when multiple electronic orders are competing. This is exemplified by charge order in some kagome systems, where evidence of nematicity and flux order from orbital currents remains inconclusive due to contradictory measurements. Here we clarify this controversy by fabricating highly symmetric samples of a member of this family, CsV3Sb5, and measuring their transport properties. We find that a measurable anisotropy is absent at any temperature in the unperturbed material. However, a pronounced in-plane transport anisotropy appears when either weak magnetic fields or strains are present. A symmetry analysis indicates that a perpendicular magnetic field can indeed lead to in-plane anisotropy by inducing a flux order coexisting with more conventional bond order. Our results provide a unifying picture for the controversial charge order in kagome metals and highlight the need for materials control at the microscopic scale in the identification of broken symmetries.

5.
Nat Commun ; 15(1): 1801, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413591

RESUMO

Finite-momentum Cooper pairing is an unconventional form of superconductivity that is widely believed to require finite magnetization. Altermagnetism is an emerging magnetic phase with highly anisotropic spin-splitting of specific symmetries, but zero net magnetization. Here, we study Cooper pairing in metallic altermagnets connected to conventional s-wave superconductors. Remarkably, we find that the Cooper pairs induced in the altermagnets acquire a finite center-of-mass momentum, despite the zero net magnetization in the system. This anomalous Cooper-pair momentum strongly depends on the propagation direction and exhibits unusual symmetric patterns. Furthermore, it yields several unique features: (i) highly orientation-dependent oscillations in the order parameter, (ii) controllable 0-π transitions in the Josephson supercurrent, (iii) large-oblique-angle Cooper-pair transfer trajectories in junctions parallel with the direction where spin splitting vanishes, and (iv) distinct Fraunhofer patterns in junctions oriented along different directions. Finally, we discuss the implementation of our predictions in candidate materials such as RuO2 and KRu4O8.

6.
Nat Mach Intell ; 6(2): 180-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404481

RESUMO

The removal or cancellation of noise has wide-spread applications in imaging and acoustics. In applications in everyday life, such as image restoration, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately. Denoising scientific data is further challenged by unknown noise profiles. In fact, such data will often include noise from multiple distinct sources, which substantially reduces the applicability of simulation-based approaches. Here we show how scientific data can be denoised by using a deep convolutional neural network such that weak signals appear with quantitative accuracy. In particular, we study X-ray diffraction and resonant X-ray scattering data recorded on crystalline materials. We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data. This success is enabled by supervised training of a deep neural network with pairs of measured low- and high-noise data. We additionally show that using artificial noise does not yield such quantitatively accurate results. Our approach thus illustrates a practical strategy for noise filtering that can be applied to challenging acquisition problems.

7.
Phys Rev Lett ; 131(11): 116601, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774272

RESUMO

The non-Hermitian skin effect is a unique phenomenon in which an extensive number of eigenstates are localized at the boundaries of a non-Hermitian system. Recent studies show that the non-Hermitian skin effect is significantly suppressed by magnetic fields. In contrast, we demonstrate that the second-order skin effect (SOSE) is robust and can even be enhanced by magnetic fields. Remarkably, SOSE can also be induced by magnetic fields from a trivial non-Hermitian system that does not experience any skin effect at zero field. These properties are intimately related to to the persistence and emergence of topological line gaps in the complex energy spectrum in the presence of magnetic fields. Moreover, we show that a magnetic field can drive a non-Hermitian system from a hybrid skin effect, where the first-order skin effect and SOSE coexist, to pure SOSE. Our results describe a qualitatively new magnetic field behavior of the non-Hermitian skin effect.

8.
Phys Rev Lett ; 130(10): 106203, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962034

RESUMO

We propose and study a two-dimensional phase of shifted charge density waves (CDW), which is constructed from an array of weakly coupled 1D CDW wires whose phases shift from one wire to the next. We show that the fully gapped bulk CDW has topological properties, characterized by a nonzero Chern number, that imply edge modes within the bulk gap. Remarkably, these edge modes exhibit spectral pseudoflow as a function of position along the edge, and are thus dual to the chiral edge modes of Chern insulators with their spectral flow in momentum space. Furthermore, we show that the CDW edge modes are stable against interwire coupling. Our predictions can be tested experimentally in quasi-1D CDW compounds such as Ta_{2}Se_{8}I.

9.
Nano Lett ; 23(7): 2476-2482, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36972710

RESUMO

Step edges of topological crystalline insulators can be viewed as predecessors of higher-order topology, as they embody one-dimensional edge channels embedded in an effective three-dimensional electronic vacuum emanating from the topological crystalline insulator. Using scanning tunneling microscopy and spectroscopy, we investigate the behavior of such edge channels in Pb1-xSnxSe under doping. Once the energy position of the step edge is brought close to the Fermi level, we observe the opening of a correlation gap. The experimental results are rationalized in terms of interaction effects which are enhanced since the electronic density is collapsed to a one-dimensional channel. This constitutes a unique system to study how topology and many-body electronic effects intertwine, which we model theoretically through a Hartree-Fock analysis.

10.
Nat Commun ; 14(1): 622, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739281

RESUMO

Curved spaces play a fundamental role in many areas of modern physics, from cosmological length scales to subatomic structures related to quantum information and quantum gravity. In tabletop experiments, negatively curved spaces can be simulated with hyperbolic lattices. Here we introduce and experimentally realize hyperbolic matter as a paradigm for topological states through topolectrical circuit networks relying on a complex-phase circuit element. The experiment is based on hyperbolic band theory that we confirm here in an unprecedented numerical survey of finite hyperbolic lattices. We implement hyperbolic graphene as an example of topologically nontrivial hyperbolic matter. Our work sets the stage to realize more complex forms of hyperbolic matter to challenge our established theories of physics in curved space, while the tunable complex-phase element developed here can be a key ingredient for future experimental simulation of various Hamiltonians with topological ground states.

11.
Phys Rev Lett ; 129(24): 246402, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563257

RESUMO

Recently, hyperbolic lattices that tile the negatively curved hyperbolic plane emerged as a new paradigm of synthetic matter, and their energy levels were characterized by a band structure in a four- (or higher-) dimensional momentum space. To explore the uncharted topological aspects arising in hyperbolic band theory, we here introduce elementary models of hyperbolic topological band insulators: the hyperbolic Haldane model and the hyperbolic Kane-Mele model; both obtained by replacing the hexagonal cells of their Euclidean counterparts by octagons. Their nontrivial topology is revealed by computing topological invariants in both position and momentum space. The bulk-boundary correspondence is evidenced by comparing bulk and boundary density of states, by modeling propagation of edge excitations, and by their robustness against disorder.

12.
Nat Commun ; 13(1): 5791, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184669

RESUMO

In insulating crystals, it was previously shown that defects with two fewer dimensions than the bulk can bind topological electronic states. We here further extend the classification of topological defect states by demonstrating that the corners of crystalline defects with integer Burgers vectors can bind 0D higher-order end (HEND) states with anomalous charge and spin. We demonstrate that HEND states are intrinsic topological consequences of the bulk electronic structure and introduce new bulk topological invariants that are predictive of HEND dislocation states in solid-state materials. We demonstrate the presence of first-order 0D defect states in PbTe monolayers and HEND states in 3D SnTe crystals. We relate our analysis to magnetic flux insertion in insulating crystals. We find that π-flux tubes in inversion- and time-reversal-symmetric (helical) higher-order topological insulators bind Kramers pairs of spin-charge-separated HEND states, which represent observable signatures of anomalous surface half quantum spin Hall states.

13.
Phys Rev Lett ; 129(16): 166401, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306757

RESUMO

Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge density wave, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to nonkagome surface layers. Here, we tunnel into the kagome lattice of FeGe to uncover features of the charge order. Our spectroscopic imaging identifies a 2×2 charge order in the magnetic kagome lattice, resembling that discovered in kagome superconductors. Spin mapping across steps of unit cell height demonstrates the existence of spin-polarized electrons with an antiferromagnetic stacking order. We further uncover the correlation between antiferromagnetism and charge order anisotropy, highlighting the unusual magnetic coupling of the charge order. Finally, we detect a pronounced edge state within the charge order energy gap, which is robust against the irregular shape fluctuations of the kagome lattice edges. We discuss our results with the theoretically considered topological features of the kagome charge order including unconventional magnetism and bulk-boundary correspondence.

14.
Nature ; 611(7936): 461-466, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36224393

RESUMO

When electric conductors differ from their mirror image, unusual chiral transport coefficients appear that are forbidden in achiral metals, such as a non-linear electric response known as electronic magnetochiral anisotropy (eMChA)1-6. Although chiral transport signatures are allowed by symmetry in many conductors without a centre of inversion, they reach appreciable levels only in rare cases in which an exceptionally strong chiral coupling to the itinerant electrons is present. So far, observations of chiral transport have been limited to materials in which the atomic positions strongly break mirror symmetries. Here, we report chiral transport in the centrosymmetric layered kagome metal CsV3Sb5 observed via second-harmonic generation under an in-plane magnetic field. The eMChA signal becomes significant only at temperatures below [Formula: see text] 35 K, deep within the charge-ordered state of CsV3Sb5 (TCDW ≈ 94 K). This temperature dependence reveals a direct correspondence between electronic chirality, unidirectional charge order7 and spontaneous time-reversal symmetry breaking due to putative orbital loop currents8-10. We show that the chirality is set by the out-of-plane field component and that a transition from left- to right-handed transport can be induced by changing the field sign. CsV3Sb5 is the first material in which strong chiral transport can be controlled and switched by small magnetic field changes, in stark contrast to structurally chiral materials, which is a prerequisite for applications in chiral electronics.

15.
Nat Mater ; 21(10): 1111-1115, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35835819

RESUMO

Room-temperature realization of macroscopic quantum phases is one of the major pursuits in fundamental physics1,2. The quantum spin Hall phase3-6 is a topological quantum phase that features a two-dimensional insulating bulk and a helical edge state. Here we use vector magnetic field and variable temperature based scanning tunnelling microscopy to provide micro-spectroscopic evidence for a room-temperature quantum spin Hall edge state on the surface of the higher-order topological insulator Bi4Br4. We find that the atomically resolved lattice exhibits a large insulating gap of over 200 meV, and an atomically sharp monolayer step edge hosts an in-gap gapless state, suggesting topological bulk-boundary correspondence. An external magnetic field can gap the edge state, consistent with the time-reversal symmetry protection inherent in the underlying band topology. We further identify the geometrical hybridization of such edge states, which not only supports the Z2 topology of the quantum spin Hall state but also visualizes the building blocks of the higher-order topological insulator phase. Our results further encourage the exploration of high-temperature transport quantization of the putative topological phase reported here.

16.
Nat Commun ; 13(1): 4373, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902574

RESUMO

The Laplace operator encodes the behavior of physical systems at vastly different scales, describing heat flow, fluids, as well as electric, gravitational, and quantum fields. A key input for the Laplace equation is the curvature of space. Here we discuss and experimentally demonstrate that the spectral ordering of Laplacian eigenstates for hyperbolic (negatively curved) and flat two-dimensional spaces has a universally different structure. We use a lattice regularization of hyperbolic space in an electric-circuit network to measure the eigenstates of a 'hyperbolic drum', and in a time-resolved experiment we verify signal propagation along the curved geodesics. Our experiments showcase both a versatile platform to emulate hyperbolic lattices in tabletop experiments, and a set of methods to verify the effective hyperbolic metric in this and other platforms. The presented techniques can be utilized to explore novel aspects of both classical and quantum dynamics in negatively curved spaces, and to realise the emerging models of topological hyperbolic matter.

17.
Phys Rev Lett ; 128(9): 099901, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302838

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.127.217601.

18.
Phys Rev Lett ; 129(25): 256401, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608229

RESUMO

We show that fully localized, three-dimensional, time-reversal-symmetry-broken insulators do not belong to a single phase of matter but can realize topologically distinct phases that are labeled by integers. The phase transition occurs only when the system becomes conducting at some filling. We find that these novel topological phases are fundamentally distinct from insulators without disorder: they are guaranteed to host delocalized boundary states giving rise to the quantized boundary Hall conductance, whose value is equal to the bulk topological invariant.

19.
Phys Rev Lett ; 127(21): 217601, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860107

RESUMO

Motivated by the recent discovery of unconventional charge order, we develop a theory of electronically mediated charge density wave formation in the family of kagome metals AV_{3}Sb_{5} (A=K,Rb,Cs). The intertwining of van Hove filling and sublattice interference suggests a three-fold charge density wave instability at T_{CDW}. From there, the charge order forming below T_{CDW} can unfold into a variety of phases capable of exhibiting orbital currents and nematicity. We develop a Ginzburg Landau formalism to stake out the parameter space of kagome charge order. We find a nematic chiral charge order to be energetically preferred, which shows tentative agreement with experimental evidence.

20.
Phys Rev Lett ; 127(17): 177001, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739258

RESUMO

The recent discovery of AV_{3}Sb_{5} (A=K,Rb,Cs) has uncovered an intriguing arena for exotic Fermi surface instabilities in a kagome metal. Among them, superconductivity is found in the vicinity of multiple van Hove singularities, exhibiting indications of unconventional pairing. We show that the sublattice interference mechanism is central to understanding the formation of superconductivity in a kagome metal. Starting from an appropriately chosen minimal tight-binding model with multiple van Hove singularities close to the Fermi level for AV_{3}Sb_{5}, we provide a random phase approximation analysis of superconducting instabilities. Nonlocal Coulomb repulsion, the sublattice profile of the van Hove bands, and the interaction strength turn out to be the crucial parameters to determine the preferred pairing symmetry. Implications for potentially topological surface states are discussed, along with a proposal for additional measurements to pin down the nature of superconductivity in AV_{3}Sb_{5}.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...