Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2810: 211-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926282

RESUMO

In traditional cell line design pipelines, cost- and time-intensive long-term stability studies must be performed due to random integration of the transgene into the genome. By this, integration into epigenetically silenced regions can lead to silencing of the recombinant promoter over time. Site-specific integration into regions with active chromatin structure can overcome this problem and lead to strong and stable gene expression. Here, we describe a detailed protocol to identify integration sites with epigenetically preferable properties by chromatin immunoprecipitation sequencing and use them for stable and strong gene expression by applying CRISPR/Cas9. Furthermore, the examination of the integration sites with focus on Cas9-targeted sequencing with nanopores is described.


Assuntos
Sistemas CRISPR-Cas , Humanos , Código das Histonas/genética , Edição de Genes/métodos , Linhagem Celular , Epigênese Genética , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Histonas/metabolismo , Histonas/genética , Cromatina/genética , Cromatina/metabolismo
2.
Biotechnol Prog ; : e3468, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602130

RESUMO

Cell line generation of mammalian cells is a time-consuming and labor-intensive process, especially because of challenges in clone selection after transfection. Antibiotics are common selection agents for mammalian cells due to their simplicity of use. However, the optimal antibiotic concentration must be determined with a kill curve experiment before clone selection starts. The traditional kill curve experiments are resource-intensive and time-consuming due to necessary sampling and offline analysis effort. This study, thus, explores the potential of online monitoring the oxygen transfer rate (OTR), as a non-invasive and efficient alternative for kill curve experiments. The OTR is monitored using the Transfer-rate Online Measurement (TOM) system and the micro(µ)-scale Transfer-rate Online Measurement (µTOM) device, which was used for mammalian cells first. It could be shown that the OTR curves for both devices align perfectly, affirming consistent cultivation conditions. The µTOM device proves effective in performing kill curve experiments in 96-deep-well plates without the need for sampling and offline analysis. The streamlined approach reduces medium consumption by 95%, offering a cost-effective and time-efficient solution for kill curve experiments. The study validates the generalizability of the method by applying it to two different CHO cell lines (CHO-K1 and sciCHO) with two antibiotics (puromycin and hygromycin B) each. In conclusion, the broad application of OTR online monitoring for CHO cell cultures in 96-deep-well plates is highlighted. The µTOM device proves as a valuable tool for high-throughput experiments, paving the way for diverse applications, such as media and clone screening, cytotoxicity tests, and scale-up experiments.

3.
Front Bioeng Biotechnol ; 10: 1010719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312557

RESUMO

Chinese hamster ovary (CHO) cells are the most important platform for producing biotherapeutics. Random integration of a transgene into epigenetically instable regions of the genome results in silencing of the gene of interest and loss of productivity during upstream processing. Therefore, cost- and time-intensive long-term stability studies must be performed. Site-specific integration into safe harbors is a strategy to overcome these limitations of conventional cell line design. Recent publications predict safe harbors in CHO cells based on omics data sets or by learning from random integrations, but those predictions remain theory. In this study, we established a CRISPR/Cas9-mediated site-specific integration strategy based on ChIP-seq data to improve stability of recombinant CHO cells. Therefore, a ChIP experiment from the exponential and stationary growth phase of a fed-batch cultivation of CHO-K1 cells yielded 709 potentially stable integration sites. The reporter gene eGFP was integrated into three regions harboring specific modifications by CRISPR/Cas9. Targeted Cas9 nanopore sequencing showed site-specific integration in all 3 cell pools with a specificity between 23 and 73%. Subsequently, the cells with the three different integration sites were compared with the randomly integrated donor vector in terms of transcript level, productivity, gene copy numbers and stability. All site-specific integrations showed an increase in productivity and transcript levels of up to 7.4-fold. In a long-term cultivation over 70 generations, two of the site-specific integrations showed a stable productivity (>70%) independent of selection pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...