Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692362

RESUMO

Stormwater pollution is a key factor contributing to water quality degradation, posing substantial environmental and human health risks. Although stormwater retention ponds, also referred to as wet ponds, are commonly implemented to alleviate stormwater challenges by reducing peak flow and removing suspended solids, their effectiveness in removing heavy metals and nutrients is limited. This study evaluated the performance of floating treatment platforms (FTPs) featuring vetiver grass (Chrysopogon zizanioides), a non-invasive, nutrient- and metal-accumulating perennial grass, in removing heavy metals (Cu, Pb, and Zn) and nutrients (P and N) in stormwater retention ponds. Furthermore, the potential for utilizing the spent vetiver biomass for generating biochar and bioethanol was investigated. The study was conducted in a greenhouse setup under simulated wet and dry weather conditions using pond water collected from a retention pond in Stafford Township, New Jersey, USA. Two FTPs with vetiver (vegetated FTPs) were compared with two FTPs without vetiver (non-vegetated FTPs), which served as controls. Results showed that the removal of heavy metals and nutrients by the FTPs with vetiver was significantly higher (p < 0.05) than the FTPs without vetiver. Notably, vetiver showed resilience to stormwater pollutants and hydroponic conditions, displaying no visible stress symptoms. The biochar and bioethanol generated from the spent vetiver exhibited desirable yield and quality, without raising concerns regarding pollutant leaching, indicated by very low TCLP and SPLP concentrations. This study provides compelling evidence that the implementation of vetiver-based FTPs offers a cost-effective and environment-friendly solution for mitigating stormwater pollution in retention ponds. Furthermore, the utilization of vetiver biomass for biofuel and biochar production supports clean production and fostering circular economy efforts.


Assuntos
Biomassa , Carvão Vegetal , Etanol , Metais Pesados , Poluentes Químicos da Água , Carvão Vegetal/química , Metais Pesados/análise , Etanol/química , Poluentes Químicos da Água/análise , Vetiveria , Poaceae , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Chuva
2.
Materials (Basel) ; 16(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984402

RESUMO

Biochar has shown great promise in producing low-cost low-carbon concrete for civil infrastructure applications. However, there is limited research comparing the use of pristine and contaminated biochar in concrete. This paper presents comprehensive laboratory experiments and three-dimensional nonlinear finite element analysis on the mechanical, economical, and environmental performance of reinforced concrete beams made using concrete blended with biochar generated from vetiver grass roots after the roots were used in an oil extraction process. Both pristine biochar and biochar that were used to treat wastewater through adsorbing heavy metals (100 mg/L of Pb, Cu, Cd, and Zn) were investigated. The biochar was used to replace up to 6% Portland cement in concrete. Laboratory experiments were conducted to characterize the workability, mechanical properties, shrinkage, and leaching potential of the concrete blended with biochar. The results showed that using biochar could increase the compressive strengths and reduce the shrinkage of concrete without causing a leaching problem. The results from finite element analysis of the reinforced concrete beams showed that the use of biochar was able to increase the flexural performance of the beams as well as their economic and environmental performance. This research will promote the development and structural applications of low-cost low-carbon concrete.

3.
Environ Sci Pollut Res Int ; 30(5): 12030-12040, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36103075

RESUMO

Exposure to arsenic (As) from a diet of contaminated rice is a widespread problem and a serious concern in several parts of the world. There is a need to develop sustainable, effective, and reliable strategies to reduce As accumulation in rice. Our goal was to develop and test a simple crop rotation method of alternating rice with the As hyperaccumulator plant, Chinese brake fern (Pteris vitatta L.), to reduce As concentrations in rice grains. A greenhouse column study was performed for 2 years using As-contaminated rice paddy soil from West Bengal. Rice was grown under flooded conditions and irrigated with As-contaminated water to simulate field conditions. Chinese brake fern was grown between two rice cycles in experimental columns, while control columns were left unplanted. Our results show that at the end of two cycles, there was a statistically significant decrease in soil As concentrations in the treatment columns compared to the control columns. After one rotation with the fern, there was a significant decline in As concentrations in rice grains in treatment plants and a concomitant decline in both noncarcinogenic and carcinogenic health risks. Our results indicate that there could be substantial benefit in implementing this simple crop rotation model to help lower human health risks from As exposure via rice ingestion.


Assuntos
Arsênio , Oryza , Pteris , Poluentes do Solo , Humanos , Poluição da Água , Solo , Produção Agrícola
4.
Molecules ; 29(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202646

RESUMO

Vetiver root is widely used to produce essential oils in the aromatherapy industry. After the extraction of oil, the roots are disposed of as waste. The central objective of this research was to explore the conversion of this waste into a resource using a circular economy framework. To generate biochar, vetiver roots were pyrolyzed at different temperatures (300, 500, and 700 °C) and residence times (30, 60, and 120 min). Analysis showed the root biochar generated at 500 °C and held for 60 min had the highest surface area of 308.15 m2/g and a yield of 53.76%, in addition to other favorable characteristics. Comparatively, the surface area and the yield of shoot biochar were significantly lower compared to those of the roots. Repurposing the spent root biomass for environmental and agronomic benefits, our circular economy concept prevents the plant tissue from entering landfills or the waste stream.


Assuntos
Agricultura , Aromaterapia , Carvão Vegetal , Biomassa , Indústrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...