Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Biochem ; 210(3): 751-7, 1992 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-1483459

RESUMO

Physicochemical characteristics of previously suggested surface-modified polymeric nanogranules (SMPN) and catalytic and stability properties of alpha-chymotrypsin entrapped into such nanogranules in a nonpolar solvent were investigated in more details. SMPN were obtained by polymerization of an acrylamide/N,N'-methylene-bisacrylamide mixture in a mixed reversed micellar system composed of Aerosol OT [sodium di(2-ethylhexyl)sulfosuccinate] and the polymeric surfactant Pluronic F-108 modified with polymerizable groups, followed by the chromatographic removal of the auxiliary surfactant, Aerosol OT. An optimal solvent system was found providing the required orientation of the polymeric surfactant in starting mixed micelles, i.e. with polar fragments immersed into the micellar interior and apolar fragments protruding into organic solvent. The hydrodynamic diameter of SMPN in benzene solution was estimated by means of quasi-elastic light scattering to be 84 +/- 1 nm. Catalytic and stability properties of alpha-chymotrypsin entrapped into SMPN strongly depended on conditions of preparation of SMPN. The optimal concentration of acrylamide monomers in the micellar interior and hydration degree of starting reversed micelles were found to be 20% by mass and wo = 15, respectively. alpha-Chymotrypsin-containing SMPN were used as a catalyst in the synthesis of N-acetyl-L-tyrosine ethyl ester from N-acetyl-L-tyrosine and ethanol, performed in a membrane reactor.


Assuntos
Quimotripsina/metabolismo , Enzimas Imobilizadas/metabolismo , Catálise , Indicadores e Reagentes , Cinética , Microesferas , Poloxaleno , Termodinâmica
2.
Eur J Biochem ; 190(1): 155-9, 1990 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-2364944

RESUMO

A kinetic theory is proposed for enzymatic reactions proceeding in reversed micellar systems in organic solvents, and involving substrates capable of partitioning among all pseudophases of the micellar system i.e. aqueous cores of reversed micelles, micellar membranes and organic solvent. The theory permits determination of true (i.e. with reference to the aqueous phase, where solubilized enzyme is localized) catalytic parameters of the enzyme, provided partition coefficients of the substrate between different phases are known. The validity of the kinetic theory was verified by the example of oxidation of aliphatic alcohols catalyzed by horse liver alcohol dehydrogenase in the system of reversed sodium bis(2-ethylhexyl)sulfosuccinate (AOT, aerosol OT) micelles in octane. In order to determine partition coefficients of alcohols between phases of the micellar system, flow microcalorimetry technique was used. It was shown that in the first approximation, the partition coefficient of the substrate in a simple biphasic system consisting of water and corresponding organic solvent can be used as an estimate for the partition coefficient of the substrate between aqueous and organic solvent phases of the micellar system. True values of the Michaelis constant of alcohols in the micellar system, determined using suggested approach, are equal to those obtained in aqueous solution and differ from apparent values referred to the total volume of the system. The results clearly show that the previously reported shift in the substrate specificity of HLADH, observed on changing from aqueous solution to the system of reversed aerosol OT micelles in octane, is apparent and can be explained on the basis of partitioning effects of alcoholic substrates between phases of the micellar system.


Assuntos
Coloides , Enzimas/metabolismo , Micelas , Modelos Biológicos , Álcool Desidrogenase/metabolismo , Animais , Fenômenos Químicos , Físico-Química , Cavalos , Cinética , Fígado/enzimologia , Solventes , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA