Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 225(1): 284-296, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461534

RESUMO

Seed longevity, the maintenance of viability during dry storage, is a crucial factor to preserve plant genetic resources and seed vigor. Inference of a temporal gene-regulatory network of seed maturation identified auxin signaling as a putative mechanism to induce longevity-related genes. Using auxin-response sensors and tryptophan-dependent auxin biosynthesis mutants of Arabidopsis thaliana L., the role of auxin signaling in longevity was studied during seed maturation. DII and DR5 sensors demonstrated that, concomitant with the acquisition of longevity, auxin signaling input and output increased and underwent a spatiotemporal redistribution, spreading throughout the embryo. Longevity of seeds of single auxin biosynthesis mutants with altered auxin signaling activity was affected in a dose-response manner depending on the level of auxin activity. Longevity-associated genes with promoters enriched in auxin response elements and the master regulator ABSCISIC ACID INSENSITIVE3 were induced by auxin in developing embryos and deregulated in auxin biosynthesis mutants. The beneficial effect of exogenous auxin during seed maturation on seed longevity was abolished in abi3-1 mutants. These data suggest a role for auxin signaling activity in the acquisition of longevity during seed maturation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Ácido Abscísico/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sementes/embriologia , Sementes/genética , Fatores de Transcrição/metabolismo
2.
Int J Mol Sci ; 19(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857468

RESUMO

Many mitochondrial proteins are synthesized as precursors in the cytosol with an N-terminal mitochondrial targeting sequence (MTS) which is cleaved off upon import. Although much is known about import mechanisms and MTS structural features, the variability of MTS still hampers robust sub-cellular software predictions. Here, we took advantage of two paralogous late embryogenesis abundant proteins (LEA) from Arabidopsis with different subcellular locations to investigate structural determinants of mitochondrial import and gain insight into the evolution of the LEA genes. LEA38 and LEA2 are short proteins of the LEA_3 family, which are very similar along their whole sequence, but LEA38 is targeted to mitochondria while LEA2 is cytosolic. Differences in the N-terminal protein sequences were used to generate a series of mutated LEA2 which were expressed as GFP-fusion proteins in leaf protoplasts. By combining three types of mutation (substitution, charge inversion, and segment replacement), we were able to redirect the mutated LEA2 to mitochondria. Analysis of the effect of the mutations and determination of the LEA38 MTS cleavage site highlighted important structural features within and beyond the MTS. Overall, these results provide an explanation for the likely loss of mitochondrial location after duplication of the ancestral gene.


Assuntos
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Família Multigênica , Mutação , Proteínas de Plantas/química , Ligação Proteica , Transporte Proteico , Proteólise , Relação Estrutura-Atividade
3.
Plant Cell Environ ; 38(7): 1299-311, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25367071

RESUMO

LEAM, a late embryogenesis abundant protein, and HSP22, a small heat shock protein, were shown to accumulate in the mitochondria during pea (Pisum sativum L.) seed development, where they are expected to contribute to desiccation tolerance. Here, their expression was examined in seeds of 89 pea genotypes by Western blot analysis. All genotypes expressed LEAM and HSP22 in similar amounts. In contrast with HSP22, LEAM displayed different isoforms according to apparent molecular mass. Each of the 89 genotypes harboured a single LEAM isoform. Genomic and RT-PCR analysis revealed four LEAM genes differing by a small variable indel in the coding region. These variations were consistent with the apparent molecular mass of each isoform. Indels, which occurred in repeated domains, did not alter the main properties of LEAM. Structural modelling indicated that the class A α-helix structure, which allows interactions with the mitochondrial inner membrane in the dry state, was preserved in all isoforms, suggesting functionality is maintained. The overall results point out the essential character of LEAM and HSP22 in pea seeds. LEAM variability is discussed in terms of pea breeding history as well as LEA gene evolution mechanisms.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas Mitocondriais/metabolismo , Pisum sativum/fisiologia , Sequência de Aminoácidos , Genótipo , Proteínas de Choque Térmico/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas , Sementes/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , Temperatura
4.
Plant Cell ; 26(7): 3148-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005920

RESUMO

Late embryogenesis abundant (LEA) proteins are hydrophilic, mostly intrinsically disordered proteins, which play major roles in desiccation tolerance. In Arabidopsis thaliana, 51 genes encoding LEA proteins clustered into nine families have been inventoried. To increase our understanding of the yet enigmatic functions of these gene families, we report the subcellular location of each protein. Experimental data highlight the limits of in silico predictions for analysis of subcellular localization. Thirty-six LEA proteins localized to the cytosol, with most being able to diffuse into the nucleus. Three proteins were exclusively localized in plastids or mitochondria, while two others were found dually targeted to these organelles. Targeting cleavage sites could be determined for five of these proteins. Three proteins were found to be endoplasmic reticulum (ER) residents, two were vacuolar, and two were secreted. A single protein was identified in pexophagosomes. While most LEA protein families have a unique subcellular localization, members of the LEA_4 family are widely distributed (cytosol, mitochondria, plastid, ER, and pexophagosome) but share the presence of the class A α-helix motif. They are thus expected to establish interactions with various cellular membranes under stress conditions. The broad subcellular distribution of LEA proteins highlights the requirement for each cellular compartment to be provided with protective mechanisms to cope with desiccation or cold stress.


Assuntos
Arabidopsis/fisiologia , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Temperatura Baixa , Biologia Computacional , Dessecação , Genes Reporter , Organelas/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico , Protoplastos , Proteínas Recombinantes de Fusão , Plântula/citologia , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...