Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wiley Interdiscip Rev RNA ; 12(6): e1663, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33987958

RESUMO

RNA modifications and their corresponding epitranscriptomic writer and eraser enzymes regulate gene expression. Altered RNA modification levels, dysregulated writers, and sequence changes that disrupt epitranscriptomic marks have been linked to mitochondrial and neurological diseases, cancer, and multifactorial disorders. The detection of epitranscriptomics marks is challenging, but different next generation sequencing (NGS)-based and mass spectrometry-based approaches have been used to identify and quantitate the levels of individual and groups of RNA modifications. NGS and mass spectrometry-based approaches have been coupled with chemical, antibody or enzymatic methodologies to identify modifications in most RNA species, mapped sequence contexts and demonstrated the dynamics of specific RNA modifications, as well as the collective epitranscriptome. While epitranscriptomic analysis is currently limited to basic research applications, specific approaches for the detection of individual RNA modifications and the epitranscriptome have potential biomarker applications in detecting human conditions and diseases. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Processing > tRNA Processing RNA in Disease and Development > RNA in Disease.


Assuntos
Neoplasias , Doenças do Sistema Nervoso , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Doenças do Sistema Nervoso/genética , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Transcriptoma
2.
Epigenetics ; 15(10): 1121-1138, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32303148

RESUMO

The epitranscriptomic writer Alkylation Repair Homolog 8 (ALKBH8) is a transfer RNA (tRNA) methyltransferase that modifies the wobble uridine of selenocysteine tRNA to promote the specialized translation of selenoproteins. Using Alkbh8 deficient (Alkbh8def) mice, we have investigated the importance of epitranscriptomic systems in the response to naphthalene, an abundant polycyclic aromatic hydrocarbon and environmental toxicant. We performed basal lung analysis and naphthalene exposure studies using wild type (WT), Alkbh8def and Cyp2abfgs-null mice, the latter of which lack the cytochrome P450 enzymes required for naphthalene bioactivation. Under basal conditions, lungs from Alkbh8def mice have increased markers of oxidative stress and decreased thioredoxin reductase protein levels, and have reprogrammed gene expression to differentially regulate stress response transcripts. Alkbh8def mice are more sensitive to naphthalene induced death than WT, showing higher susceptibility to lung damage at the cellular and molecular levels. Further, WT mice develop a tolerance to naphthalene after 3 days, defined as resistance to a high challenging dose after repeated exposures, which is absent in Alkbh8def mice. We conclude that the epitranscriptomic writer ALKBH8 plays a protective role against naphthalene-induced lung dysfunction and promotes naphthalene tolerance. Our work provides an early example of how epitranscriptomic systems can regulate the response to environmental stress in vivo.


Assuntos
Poluentes Atmosféricos/toxicidade , Homólogo AlkB 8 da RNAt Metiltransferase/metabolismo , Epigênese Genética , Pulmão/metabolismo , Naftalenos/toxicidade , Estresse Oxidativo , Transcriptoma , Homólogo AlkB 8 da RNAt Metiltransferase/genética , Animais , Sistema Enzimático do Citocromo P-450/genética , Resistência a Medicamentos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Processamento Pós-Transcricional do RNA , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...