Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 8(19): 9934-9946, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386587

RESUMO

Managing the nonlethal effects of disturbance on wildlife populations has been a long-term goal for decision makers, managers, and ecologists, and assessment of these effects is currently required by European Union and United States legislation. However, robust assessment of these effects is challenging. The management of human activities that have nonlethal effects on wildlife is a specific example of a fundamental ecological problem: how to understand the population-level consequences of changes in the behavior or physiology of individual animals that are caused by external stressors. In this study, we review recent applications of a conceptual framework for assessing and predicting these consequences for marine mammal populations. We explore the range of models that can be used to formalize the approach and we identify critical research gaps. We also provide a decision tree that can be used to select the most appropriate model structure given the available data. Synthesis and applications: The implementation of this framework has moved the focus of discussion of the management of nonlethal disturbances on marine mammal populations away from a rhetorical debate about defining negligible impact and toward a quantitative understanding of long-term population-level effects. Here we demonstrate the framework's general applicability to other marine and terrestrial systems and show how it can support integrated modeling of the proximate and ultimate mechanisms that regulate trait-mediated, indirect interactions in ecological communities, that is, the nonconsumptive effects of a predator or stressor on a species' behavior, physiology, or life history.

2.
Theor Popul Biol ; 103: 44-59, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25930160

RESUMO

We develop a theory of generalist predation showing how alternative prey species are affected by changes in both mean abundance and variability (coefficient of variation) of their predator's primary prey. The theory is motivated by the indirect effects of cyclic rodent populations on ground-breeding birds, and developed through progressive analytic simplifications of an empirically-based model. It applies nonetheless to many other systems where primary prey have fast life-histories and can become superabundant, thus facilitating impact on alternative prey species and generating highly asymmetric interactions. Our results suggest that predator effects on alternative prey should generally decrease with mean primary prey abundance, and increase with primary prey variability (low to high CV)-unless predators have strong aggregative responses, in which case these results can be reversed. Approximations of models including predator dynamics (general numerical response with possible delays) confirm these results but further suggest that negative temporal correlation between predator and primary prey is harmful to alternative prey. Finally, we find that measurements of predator numerical responses are crucial to predict-even qualitatively-the response of ecosystems to changes in the dynamics of outbreaking prey species.


Assuntos
Comportamento Predatório , Animais , Modelos Teóricos , Roedores
3.
J Anim Ecol ; 82(6): 1300-15, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23869551

RESUMO

1. Body condition plays a fundamental role in many ecological and evolutionary processes at a variety of scales and across a broad range of animal taxa. An understanding of how body condition changes at fine spatial and temporal scales as a result of interaction with the environment provides necessary information about how animals acquire resources. 2. However, comparatively little is known about intra- and interindividual variation of condition in marine systems. Where condition has been studied, changes typically are recorded at relatively coarse time-scales. By quantifying how fine-scale interaction with the environment influences condition, we can broaden our understanding of how animals acquire resources and allocate them to body stores. 3. Here we used a hierarchical Bayesian state-space model to estimate the body condition as measured by the size of an animal's lipid store in two closely related species of marine predator that occupy different hemispheres: northern elephant seals (Mirounga angustirostris) and southern elephant seals (Mirounga leonina). The observation model linked drift dives to lipid stores. The process model quantified daily changes in lipid stores as a function of the physiological condition of the seal (lipid:lean tissue ratio, departure lipid and departure mass), its foraging location, two measures of behaviour and environmental covariates. 4. We found that physiological condition significantly impacted lipid gain at two time-scales - daily and at departure from the colony - that foraging location was significantly associated with lipid gain in both species of elephant seals and that long-term behavioural phase was associated with positive lipid gain in northern and southern elephant seals. In northern elephant seals, the occurrence of short-term behavioural states assumed to represent foraging were correlated with lipid gain. Lipid gain was a function of covariates in both species. Southern elephant seals performed fewer drift dives than northern elephant seals and gained lipids at a lower rate. 5. We have demonstrated a new way to obtain time series of body condition estimates for a marine predator at fine spatial and temporal scales. This modelling approach accounts for uncertainty at many levels and has the potential to integrate physiological and movement ecology of top predators. The observation model we used was specific to elephant seals, but the process model can readily be applied to other species, providing an opportunity to understand how animals respond to their environment at a fine spatial scale.


Assuntos
Organismos Aquáticos/fisiologia , Ingestão de Energia , Comportamento Predatório , Focas Verdadeiras/fisiologia , Animais , Regiões Antárticas , Teorema de Bayes , Composição Corporal , California , Meio Ambiente , Feminino , Metabolismo dos Lipídeos , Modelos Biológicos , Tasmânia , Fatores de Tempo
4.
PLoS One ; 8(7): e68725, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874737

RESUMO

Mass stranding of several species of beaked whales (family Ziphiidae) associated with exposure to anthropogenic sounds has raised concern for the conservation of these species. However, little is known about the species' life histories, prey or habitat requirements. Without this knowledge, it becomes difficult to assess the effects of anthropogenic sound, since there is no way to determine whether the disturbance is impacting the species' physical or environmental requirements. Here we take a bioenergetics approach to address this gap in our knowledge, as the elusive, deep-diving nature of beaked whales has made it hard to study these effects directly. We develop a model for Ziphiidae linking feeding energetics to the species' requirements for survival and reproduction, since these life history traits would be the most likely to be impacted by non-lethal disturbances. Our models suggest that beaked whale reproduction requires energy dense prey, and that poor resource availability would lead to an extension of the inter-calving interval. Further, given current information, it seems that some beaked whale species require relatively high quality habitat in order to meet their requirements for survival and reproduction. As a result, even a small non-lethal disturbance that results in displacement of whales from preferred habitats could potentially impact a population if a significant proportion of that population was affected. We explored the impact of varying ecological parameters and model assumptions on survival and reproduction, and find that calf and fetus survival appear more readily affected than the survival of adult females.


Assuntos
Metabolismo Energético , Modelos Biológicos , Reprodução , Análise de Sobrevida , Baleias/fisiologia , Animais
5.
Am Nat ; 174(3): 399-412, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19627232

RESUMO

There are two postulated causes for the observed periodic fluctuations (cycles) in red grouse (Lagopus lagopus scoticus). The first involves interaction with the parasitic nematode Trichostrongylus tenuis. The second invokes delayed regulation through the effect of male aggressiveness on territoriality. Empirical evidence exists to support both hypotheses, and each hypothesis has been modeled deterministically. However, little effort has gone into looking at the combined effects of the two mechanisms or formally fitting the corresponding models to field data. Here we present a model for red grouse dynamics that includes both parasites and territoriality. To explore the single and combined hypotheses, we specify three versions of this model and fit them to data using Bayesian state-space modeling, a method that allows statistical inference to be performed on mechanistic models such as ours. Output from the three models is then examined to determine their goodness of fit and the biological plausibility of the parameter values required by each to fit the population data. While all three models are capable of emulating the observed cyclic dynamics, only the model including both aggression and parasites does so under consistently realistic parameter values, providing theoretical support for the idea that both mechanisms shape red grouse cycles.


Assuntos
Comportamento Animal , Doenças das Aves/parasitologia , Galliformes/fisiologia , Galliformes/parasitologia , Modelos Biológicos , Territorialidade , Tricostrongilose/veterinária , Trichostrongylus/fisiologia , Animais , Masculino , Dinâmica Populacional , Tricostrongilose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...