Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biosaf ; 27(4): 231-236, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37020568

RESUMO

Introduction: Healthcare organizations faced unique operational challenges during the COVID-19 pandemic. Assuring the safety of both patients and healthcare workers in hospitals has been the primary focus during the COVID-19 pandemic. Methods: The NIH Vaccine Program (VP) with the Vaccine Management System (VMS) was created based on the commitment of NIH leadership, program leadership, the development team, and the program team; defining Key Performance Indicators (KPIs) of the VP and the VMS; and the NIH Clinical Center's (NIH CC) interdisciplinary approach to deploying the VMS. Results: This article discusses the NIH business requirements of the VP and VMS, the target KPIs of the VP and the VMS, and the NIH CC interdisciplinary approach to deploying an organizational VMS for vaccinating the NIH workforce. The use of the DCRI Spiral-Agile Software Development Life Cycle enabled the development of a system with stakeholder involvement that could quickly adapt to changing requirements meeting the defined KPIs for the program and system. The assessment of the defined KPIs through a survey and comments from the survey support that the VP and VMS were successful. Conclusion: A comprehensive program to maintain a healthy workforce includes asymptomatic COVID testing, symptomatic COVID testing, contact tracing, vaccinations, and policy-driven education. The need to develop systems during the pandemic resulted in changes to build software quickly with the input of many more users and stakeholders then typical in a decreased amount of time.

2.
J Air Waste Manag Assoc ; 69(6): 734-742, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30698506

RESUMO

The portable high-efficiency air filtration (PHEAF) device is an engineering control common to the environmental remediation industry. Damage to the high-efficiency particulate air (HEPA) filter (e.g., filtration media, gasket), improper installation of the filter into the mounting frame, or defects in the filtration housing affect the capture efficiency of the device. PHEAF devices operating at less than marketed efficiencies justify periodic leak testing of the PHEAF device, especially when the filtered air is exhausted into occupied spaces. A leak test is accomplished by injecting a known concentration of aerosol upstream of the HEPA filter and measuring the percentage of aerosol penetrating through the filtration system. The test protocol scripted for stationary systems (i.e., biological safety cabinets) states that upstream concentrations can be empirically determined using the aerosol photometer to measure particulate matter (PM) in the airstream. This practice requires a homogenous mixture of the aerosol challenge agent within the airstream. However, design of the PHEAF device does not include a validated induction point for the aerosol. Absent of an acceptable means to achieve a homogenous mixture for upstream measurement, the aerosol concentration is mathematically derived based on the measured air volume passing through the PHEAF equipment. In this study, intake volume and exhaust volume for each PHEAF device were measured by either the balometer or the hot wire anemometer. Variability of measurements was examined by instrument and sample location (intake vs. exhaust) to understand which combination would be most consistent for measuring airflow volume. From this study, the authors conclude that the balometer is preferred compared with the hot wire anemometer for measuring airflow through the PHEAF device. Exhaust measurement by balometer seems more reliable than intake measurements by hot wire anemometer. Implications: Although testing of PHEAF devices is recommended by various public health authorities, no nationally recognized test protocol has been published in the United States. In support of measuring the performance of the PHEAF device in a field setting, this study evaluated the hot wire anemometer and balometer techniques and sample locations (intake vs. exhaust) to reliably measure airflow through the PHEAF device. Since accuracy of the particle measurement is associated with airflow volume, it is essential to obtain a true airflow reading. This study suggests that the balometer was more consistent in measuring airflow through the PHEAF device.


Assuntos
Filtros de Ar/normas , Filtração/instrumentação , Aerossóis/análise , Poeira/análise , Tamanho da Partícula , Material Particulado/análise , Reprodutibilidade dos Testes , Estados Unidos
3.
J Occup Environ Hyg ; 15(4): 285-292, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29286879

RESUMO

The portable high-efficiency air filtration (PHEAF) device is used to control particulate matter (PM) generated from construction-type activities occurring within the built environment. Examples of activities where PHEAF devices are mobilized include building renovation, asbestos abatement, remediation of microbial contamination, and lead-based paint projects. Designed for use on short-term, temporary projects the PHEAF device captures airborne PM using a high-efficiency particulate air (HEPA) filter. This study sought to evaluate the capture efficiency of the PHEAF device in a field setting. An aerosol generator and photometer were used to measure particle penetration through 85 PHEAF devices. Average overall capture efficiency ranged from 41.78% to ≥99.97% with more than 88% of the tests failing to achieve 99.97% capture efficiency. Approximately 73% of the PHEAF device sample population failed to demonstrate HEPA performance criteria during any test round. A higher occurrence of PM concentrations measured around the perimeter of the filter suggested the presence of bypass leakage. While PHEAF devices were effective in capturing a significant quantity of aerosol test agent, these findings suggest that routine testing of the PHEAF device should be conducted to validate performance.


Assuntos
Filtração/instrumentação , Exposição Ocupacional/prevenção & controle , Material Particulado , Poluentes Ocupacionais do Ar , Indústria da Construção/instrumentação , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...