Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev B ; 108(12)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37841515

RESUMO

This work reports the experimental demonstration of single-slit diffraction exhibited by electrons propagating in encapsulated graphene with an effective de Broglie wavelength corresponding to their attributes as massless Dirac fermions. Nanometer-scale device designs were implemented to fabricate a single-slit followed by five detector paths. Predictive calculations were also utilized to readily understand the observations reported. These calculations required the modeling of wave propagation in ideal case scenarios of the reported device designs to more accurately describe the observed single-slit phenomenon. This experiment was performed at room temperature and 190 K, where data from the latter highlighted the exaggerated asymmetry between electrons and holes, recently ascribed to slightly different Fermi velocities near the K point. This observation and device concept may be used for building diffraction switches with versatile applicability.

2.
ACS Nano ; 16(11): 18200-18209, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36326218

RESUMO

Photocurrent (PC) measurements can reveal the relaxation dynamics of photoexcited hot carriers beyond the linear response of conventional transport experiments, a regime important for carrier multiplication. Here, we study the relaxation of carriers in graphene in the quantum Hall regime by accurately measuring the PC signal and modeling the data using optical Bloch equations. Our results lead to a unified understanding of the relaxation processes in graphene over different magnetic field strength regimes, which is governed by the interplay of Coulomb interactions and interactions with acoustic and optical phonons. Our data provide clear indications of a sizable carrier multiplication. Moreover, the oscillation pattern and the saturation behavior of PC are manifestations of not only the chiral transport properties of carriers in the quantum Hall regime but also the chirality change at the Dirac point, a characteristic feature of a relativistic quantum Hall effect.

3.
Am J Phys ; 90(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619177

RESUMO

The dynamics of a swinging payload suspended from a stationary crane, an unwanted phenomenon on a construction site, can be described as a simple pendulum. However, an experienced crane operator can deliver a swinging payload and have it stop dead on target in a finite amount of time by carefully modulating the speed of the trolley. Generally, a series of precisely timed stop and go movements of the trolley are implemented to damp out the kinetic energy of the simple harmonic oscillator. Here, this mysterious crane operator's trick will be revealed and ultimately generalized to capture the case where the load is initially swinging. Finally, this modus operandi is applied to a torsion balance used to measure G, the universal gravitational constant responsible for the swinging of the crane's payload in the first place.

4.
J Phys Condens Matter ; 33(49)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34521077

RESUMO

Decoherence in quantum bits (qubits) is a major challenge for realizing scalable quantum computing. One of the primary causes of decoherence in qubits and quantum circuits based on superconducting Josephson junctions is the critical current fluctuation. Many efforts have been devoted to suppressing the critical current fluctuation in Josephson junctions. Nonetheless, the efforts have been hindered by the defect-induced trapping states in oxide-based tunnel barriers and the interfaces with superconductors in the traditional Josephson junctions. Motivated by this, along with the recent demonstration of 2D insulatorh-BN with exceptional crystallinity and low defect density, we fabricated a vertical NbSe2/h-BN/Nb Josephson junction consisting of a bottom NbSe2superconductor thin layer and a top Nb superconductor spaced by an atomically thinh-BN layer. We further characterized the superconducting current and voltage (I-V) relationships and Fraunhofer pattern of the NbSe2/h-BN/Nb junction. Notably, we demonstrated the critical current noise (1/fnoise power) in theh-BN-based Josephson device is at least a factor of four lower than that of the previously studied aluminum oxide-based Josephson junctions. Our work offers a strong promise ofh-BN as a novel tunnel barrier for high-quality Josephson junctions and qubit applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34250452

RESUMO

Tantalum diselenide (TaSe2) is a metallic transition metal dichalcogenide whose structure and vibrational behavior strongly depend on temperature and thickness, and this behavior includes the emergence of charge density wave (CDW) states at very low temperatures. In this work, observed Raman modes for mono- and bilayer are described across several spectral regions and compared to those seen in the bulk case. These modes, which include an experimentally observed forbidden Raman mode and low-frequency CDWs, are then matched to corresponding vibrations predicted by density functional theory (DFT). The reported match between experimental and computational results supports the presented vibrational visualizations of these modes. Support is also provided by experimental phonons observed in additional Raman spectra as a function of temperature and thickness. These results highlight the importance of understanding CDWs since they are likely to play a fundamental role in the future realization of solid-state quantum information platforms based on nonequilibrium phenomena.

6.
Phys Rev B ; 103(7)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34263094

RESUMO

As first recognized in 2010, epitaxial graphene on SiC(0001) provides a platform for quantized Hall resistance (QHR) metrology unmatched by other two-dimensional structures and materials. Here we report graphene parallel QHR arrays, with metrologically precise quantization near 1000 Ω. These arrays have tunable carrier densities, due to uniform epitaxial growth and chemical functionalization, allowing quantization at the robust ν = 2 filling factor in array devices at relative precision better than 10-8. Broad tunability of the carrier density also enables investigation of the ν = 6 plateau. Optimized networks of QHR devices described in this work suppress Ohmic contact resistance error using branched contacts and avoid crossover leakage with interconnections that are superconducting for quantizing magnetic fields up to 13.5 T. Our work enables more direct scaling of resistance for quantized values in arrays of arbitrary network geometry.

7.
J Phys Chem Ref Data ; 50(3): 033105, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-36726646

RESUMO

We report the 2018 self-consistent values of constants and conversion factors of physics and chemistry recommended by the Committee on Data of the International Science Council. The recommended values can also be found at physics.nist.gov/constants. The values are based on a least-squares adjustment that takes into account all theoretical and experimental data available through 31 December 2018. A discussion of the major improvements as well as inconsistencies within the data is given. The former include a decrease in the uncertainty of the dimensionless fine-structure constant and a nearly two orders of magnitude improvement of particle masses expressed in units of kg due to the transition to the revised International System of Units (SI) with an exact value for the Planck constant. Further, because the elementary charge, Boltzmann constant, and Avogadro constant also have exact values in the revised SI, many other constants are either exact or have significantly reduced uncertainties. Inconsistencies remain for the gravitational constant and the muon magnetic-moment anomaly. The proton charge radius puzzle has been partially resolved by improved measurements of hydrogen energy levels.

8.
Rev Mod Phys ; 93(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-36733295

RESUMO

We report the 2018 self-consistent values of constants and conversion factors of physics and chemistry recommended by the Committee on Data of the International Science Council (CODATA). The recommended values can also be found at physics.nist.gov/constants. The values are based on a least-squares adjustment that takes into account all theoretical and experimental data available through 31 December 2018. A discussion of the major improvements as well as inconsistencies within the data is given. The former include a decrease in the uncertainty of the dimensionless fine-structure constant and a nearly two orders of magnitude improvement of particle masses expressed in units of kg due to the transition to the revised International System of Units (SI) with an exact value for the Planck constant. Further, because the elementary charge, Boltzmann constant, and Avogadro constant also have exact values in the revised SI, many other constants are either exact or have significantly reduced uncertainties. Inconsistencies remain for the gravitational constant and the muon magnetic-moment anomaly. The proton charge radius puzzle has been partially resolved by improved measurements of hydrogen energy levels.

9.
Phys Rev B ; 104(8)2021.
Artigo em Inglês | MEDLINE | ID: mdl-36875776

RESUMO

We report on nonreciprocity observations in several configurations of graphene-based quantum Hall devices. Two distinct measurement configurations were adopted to verify the universality of the observations (i.e., two-terminal arrays and four-terminal devices). Our findings determine the extent to which epitaxial graphene anisotropies contribute to the observed asymmetric Hall responses. The presence of backscattering induces a device-dependent asymmetry rendering the Onsager-Casimir relations limited in their capacity to describe the behavior of such devices, except in the low-field classical regime and the fully quantized Hall state. The improved understanding of this quantum electrical process broadly limits the applicability of the reciprocity principle in the presence of quantum phase transitions and for anisotropic two-dimensional materials.

10.
Phys Rev B ; 104(8)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38883413

RESUMO

Here, we report the effects of enhanced magnetic fields resulting from type-II superconducting NbTiN slabs adjacent to narrow Hall bar devices fabricated from epitaxial graphene. Observed changes in the magnetoresistances were found to have minimal contributions from device inhomogeneities, magnet hysteresis, electron density variations along the devices, and transient phenomena. We hypothesize that Abrikosov vortices, present in type-II superconductors, contribute to these observations. By determining the London penetration depth, coupled with elements of Ginzburg-Landau theory, one can approximate an upper bound on the effect that vortex densities at low fields (< 1T) have on the reported observations. These analyses offer insights into device fabrication and how to utilize the Meissner effect for any low-field and low-temperature applications using superconductors.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33335332

RESUMO

This work presents one solution for long-term storage of epitaxial graphene (EG) in air, namely through the functionalization of millimeter-scale devices with chromium tricarbonyl - Cr(CO)3. The carrier density may be tuned reproducibly by annealing below 400 K due to the presence of Cr(CO)3. All tuning is easily reversible with exposure to air, with the idle, in-air, carrier density always being close to the Dirac point. Precision measurements in the quantum Hall regime indicate no detrimental effects from the treatment, validating the pursuit of developing air-stable EG-based QHR devices.

12.
IEEE Trans Instrum Meas ; 1.633481E62020.
Artigo em Inglês | MEDLINE | ID: mdl-33335333

RESUMO

Precision quantum Hall resistance measurements can be greatly improved when implementing new electrical contact geometries made from superconducting NbTiN. The sample designs described here minimize undesired resistances at contacts and interconnections, enabling further enhancement of device size and complexity when pursuing next-generation quantized Hall resistance devices.

13.
IEEE Trans Instrum Meas ; 69: 9374-9380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335334

RESUMO

A graphene quantized Hall resistance (QHR) device fabricated at the National Institute of Standards and Technology (NIST) was measured alongside a GaAs QHR device fabricated by the National Research Council of Canada (NRC) by comparing them to a 1 kΩ standard resistor using a cryogenic current comparator. The two devices were mounted in a custom developed dual probe that was then assessed for its viability as a suitable apparatus for precision measurements. The charge carrier density of the graphene device exhibited controllable tunability when annealed after Cr(CO)3 functionalization. These initial measurement results suggest that making resistance comparisons is possible with a single probe wired for two types of quantum standards - GaAs, the established material, and graphene, the newer material that may promote the development of more user-friendly equipment.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32863578

RESUMO

A mathematical approach is introduced for predicting quantized resistances in graphene p-n junction devices that utilize more than a single entry and exit point for electron flow. Depending on the configuration of an arbitrary number of terminals, electrical measurements yield nonconventional, fractional multiples of the typical quantized Hall resistance at the v = 2 plateau (R H ≈ 12906 Ω) and take the form: a b R H . This theoretical formulation is independent of material, and applications to other material systems that exhibit quantum Hall behaviors are to be expected. Furthermore, this formulation is supported with experimental data from graphene devices with multiple source and drain terminals.

15.
Phys Rev B ; 102(23): 235304, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34485786

RESUMO

Quantum Boltzmann formalism is employed to study the transport properties of strongly-coupled double layer systems that enable the formation of interlayer excitons and exciton condensation. The importance of exciton formation, dissociation, and condensation is highlighted in the context of thermoelectric power generation, and this mathematical inquiry provides an alternative methodology to calculate the thermoelectric efficiency given the conditions of exciton formation. The Onsager relation for the Coulomb drag resistivity is shown to be valid even when exciton condensation is present. In addition, it is found that the traditional thermoelectric figure of merit is no longer sufficient to predict the efficiency of thermoelectric power generation in the presented situations. This inquiry offers insights for designing double layer systems, including their interlayer interactions, with enhanced thermoelectric energy conversion efficiency.

16.
Phys Rev B ; 992019.
Artigo em Inglês | MEDLINE | ID: mdl-31579258

RESUMO

Metallic transition metal dichalcogenides, such as tantalum diselenide (TaSe2), display quantum correlated phenomena of superconductivity and charge density waves (CDW) at low temperatures. Here, the photophysics of 2H-TaSe2 during CDW transitions is revealed by combining temperature-dependent, low-frequency Raman spectroscopy and density functional theory (DFT). The spectra contain amplitude, phase, and zone-folded modes that are assigned to specific phonons and lattice restructuring predicted by DFT calculations with superb agreement. The non-invasive and efficient optical methodology detailed here demonstrates an essential link between atomic-scale and microscopic quantum phenomena.

17.
Carbon N Y ; 1422019.
Artigo em Inglês | MEDLINE | ID: mdl-31097837

RESUMO

Monolayer epitaxial graphene (EG) has been shown to have clearly superior properties for the development of quantized Hall resistance (QHR) standards. One major difficulty with QHR devices based on EG is that their electrical properties drift slowly over time if the device is stored in air due to adsorption of atmospheric molecular dopants. The crucial parameter for device stability is the charge carrier density, which helps determine the magnetic flux density required for precise QHR measurements. This work presents one solution to this problem of instability in air by functionalizing the surface of EG devices with chromium tricarbonyl -Cr(CO)3. Observations of carrier density stability in air over the course of one year are reported, as well as the ability to tune the carrier density by annealing the devices. For low temperature annealing, the presence of Cr(CO)3 stabilizes the electrical properties and allows for the reversible tuning of the carrier density in millimeter-scale graphene devices close to the Dirac point. Precision measurements in the quantum Hall regime show no detrimental effect on the carrier mobility.

18.
Artigo em Inglês | MEDLINE | ID: mdl-34877178

RESUMO

The growth of transition metal dichalcogenide (TMDC) alloys provides an opportunity to experimentally access information elucidating how optical properties change with gradual substitutions in the lattice compared with their pure compositions. In this work, we performed growths of alloyed crystals with stoichiometric compositions between pure forms of NbSe2 and WSe2, followed by an optical analysis of those alloys by utilizing Raman spectroscopy and spectroscopic ellipsometry.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32116346

RESUMO

In this paper, we show that quantum Hall resistance measurements using two terminals may be as precise as four-terminal measurements when applying superconducting split contacts. The described sample designs eliminate resistance contributions of terminals and contacts such that the size and complexity of next-generation quantized Hall resistance devices can be significantly improved.

20.
Metrologia ; 56(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116392

RESUMO

This work presents precision measurements of quantized Hall array resistance devices using superconducting, crossover-free, multiple interconnections as well as graphene split contacts. These new techniques successfully eliminate the accumulation of internal resistances and leakage currents that typically occur at interconnections and crossing leads between interconnected devices. As a result, a scalable quantized Hall resistance array is obtained with a nominal value that is as precise and stable as that from single-element quantized Hall resistance standards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...