Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AoB Plants ; 72015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25829380

RESUMO

The Earth's atmosphere will continue to be enriched with carbon dioxide (CO2) over the coming century. Carbon dioxide enrichment often reduces leaf transpiration, which in water-limited ecosystems may increase soil water content, change species abundances and increase the productivity of plant communities. The effect of increased soil water on community productivity and community change may be greater in ecosystems with lower precipitation, or on coarser-textured soils, but responses are likely absent in deserts. We tested correlations among yearly increases in soil water content, community change and community plant productivity responses to CO2 enrichment in experiments in a mesic grassland with fine- to coarse-textured soils, a semi-arid grassland and a xeric shrubland. We found no correlation between CO2-caused changes in soil water content and changes in biomass of dominant plant taxa or total community aboveground biomass in either grassland type or on any soil in the mesic grassland (P > 0.60). Instead, increases in dominant taxa biomass explained up to 85 % of the increases in total community biomass under CO2 enrichment. The effect of community change on community productivity was stronger in the semi-arid grassland than in the mesic grassland, where community biomass change on one soil was not correlated with the change in either the soil water content or the dominant taxa. No sustained increases in soil water content or community productivity and no change in dominant plant taxa occurred in the xeric shrubland. Thus, community change was a crucial driver of community productivity responses to CO2 enrichment in the grasslands, but effects of soil water change on productivity were not evident in yearly responses to CO2 enrichment. Future research is necessary to isolate and clarify the mechanisms controlling the temporal and spatial variations in the linkages among soil water, community change and plant productivity responses to CO2 enrichment.

2.
New Phytol ; 201(2): 498-504, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24117700

RESUMO

Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2].


Assuntos
Biodiversidade , Dióxido de Carbono/metabolismo , Mudança Climática , Fenômenos Fisiológicos Vegetais , Clima Desértico , Secas , Germinação , Larrea/crescimento & desenvolvimento , Larrea/metabolismo , Larrea/fisiologia , Nevada , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Poaceae/fisiologia , Dinâmica Populacional , Especificidade da Espécie , Água/metabolismo
3.
Glob Chang Biol ; 19(7): 2168-81, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23505209

RESUMO

Elevated atmospheric CO2 concentrations ([CO2 ]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2 ] may be particularly large in deserts, but information on their long-term response is unknown. We evaluated the cumulative effects of elevated [CO2 ] on primary production at the Nevada Desert FACE (free-air carbon dioxide enrichment) Facility. Aboveground and belowground perennial plant biomass was harvested in an intact Mojave Desert ecosystem at the end of a 10-year elevated [CO2 ] experiment. We measured community standing biomass, biomass allocation, canopy cover, leaf area index (LAI), carbon and nitrogen content, and isotopic composition of plant tissues for five to eight dominant species. We provide the first long-term results of elevated [CO2 ] on biomass components of a desert ecosystem and offer information on understudied Mojave Desert species. In contrast to initial expectations, 10 years of elevated [CO2 ] had no significant effect on standing biomass, biomass allocation, canopy cover, and C : N ratios of above- and belowground components. However, elevated [CO2 ] increased short-term responses, including leaf water-use efficiency (WUE) as measured by carbon isotope discrimination and increased plot-level LAI. Standing biomass, biomass allocation, canopy cover, and C : N ratios of above- and belowground pools significantly differed among dominant species, but responses to elevated [CO2 ] did not vary among species, photosynthetic pathway (C3 vs. C4 ), or growth form (drought-deciduous shrub vs. evergreen shrub vs. grass). Thus, even though previous and current results occasionally show increased leaf-level photosynthetic rates, WUE, LAI, and plant growth under elevated [CO2 ] during the 10-year experiment, most responses were in wet years and did not lead to sustained increases in community biomass. We presume that the lack of sustained biomass responses to elevated [CO2 ] is explained by inter-annual differences in water availability. Therefore, the high frequency of low precipitation years may constrain cumulative biomass responses to elevated [CO2 ] in desert environments.


Assuntos
Dióxido de Carbono/análise , Temperatura Baixa , Clima Desértico , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Neve , Biomassa , China , Modelos Teóricos , Fatores de Tempo
4.
Oecologia ; 153(4): 913-20, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17619205

RESUMO

Centaurea maculosa, an invasive North American plant species, shows a high degree of tolerance to the root-boring biocontrol herbivore, Agapeta zoegana. For example, infested individuals of C. maculosa often exhibit more rigorous growth and reproduction compared with their non-infested counterparts. Compensatory responses to aboveground herbivores often involve increases in leaf area and/or photosynthetic capacity, but considerably less is known about root system compensatory responses to belowground herbivory. We used a (15)N labeling approach to evaluate whether compensatory adjustments in N acquisition via changes in root morphology and/or physiological uptake capacity could explain the ability of C. maculosa to tolerate root herbivory. Root herbivory reduced whole plant N uptake by more than 30% and root uptake capacity by about 50%. Despite a marked reduction in N procurement, herbivory did not affect total biomass or shoot N status. Infested plants maintained shoot N status by shifting more of the acquired N from the root to the shoot. To our knowledge, shifting N allocation away from a root herbivore has not been reported and provides a plausible mechanism for the host plant to overcome an otherwise devastating effect of a root herbivore-induced N deficit.


Assuntos
Asteraceae/metabolismo , Mariposas/fisiologia , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Adaptação Fisiológica , Animais , Asteraceae/crescimento & desenvolvimento , Controle Biológico de Vetores , Raízes de Plantas/crescimento & desenvolvimento , Solo/análise
5.
Nature ; 417(6891): 844-8, 2002 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12075350

RESUMO

Plants can have positive effects on each other. For example, the accumulation of nutrients, provision of shade, amelioration of disturbance, or protection from herbivores by some species can enhance the performance of neighbouring species. Thus the notion that the distributions and abundances of plant species are independent of other species may be inadequate as a theoretical underpinning for understanding species coexistence and diversity. But there have been no large-scale experiments designed to examine the generality of positive interactions in plant communities and their importance relative to competition. Here we show that the biomass, growth and reproduction of alpine plant species are higher when other plants are nearby. In an experiment conducted in subalpine and alpine plant communities with 115 species in 11 different mountain ranges, we find that competition generally, but not exclusively, dominates interactions at lower elevations where conditions are less physically stressful. In contrast, at high elevations where abiotic stress is high the interactions among plants are predominantly positive. Furthermore, across all high and low sites positive interactions are more important at sites with low temperatures in the early summer, but competition prevails at warmer sites.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Pressão Atmosférica , Biomassa , Geografia , Desenvolvimento Vegetal , Reprodução , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...