Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Appl Geochem ; 157: 1-17, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37941778

RESUMO

Contamination from acid mine drainage affects ecosystems and usability of groundwater for domestic and municipal purposes. The Captain Jack Superfund Site outside of Ward, Boulder County, Colorado, USA, hosts a draining mine adit that was remediated through emplacement of a hydraulic bulkhead to preclude acid mine drainage from entering nearby Lefthand Creek. During impoundment of water within the mine workings in 2020, a diverse and novel dataset of stable isotopes of water, sulfate, and carbon (δ2H, δ18OH2O, δ18OSO4, δ34S, δ13CDIC), rare earth elements, and environmental tracers (noble gases and tritium) were collected to understand groundwater recharge and mixing, mechanisms of sulfide oxidation and water-rock interaction, and the influence of remediation on the hydrologic and geochemical system. Water isotopes indicate that groundwater distal from the mine workings has seasonally variable recharge sources whereas water within the workings has a distinctive composition with minimal temporal variability. Sulfate isotopes indicate that sulfide oxidation occurs both within the mine workings and in adjacent igneous dikes, and that sulfide oxidation may occur under suboxic conditions with ferric iron as the oxidant. Carbon isotopes track the neutralization of acidic waters and the carbon mass budget of the system. Rare earth elements corroborate stable isotopes in indicating groundwater compartmentalization, and additionally illustrate enhanced mineral weathering in the mine workings. Environmental tracers indicate mixing of modern and pre-modern groundwater and inform timelines that active remediation may be needed. Together these datasets provide a useful template for similar investigations of abandoned mine sites where physical mixing processes, sources of solute loading, or remediation timeframes are of importance.

2.
Environ Monit Assess ; 193(9): 572, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34387759

RESUMO

Residual pit lakes from mining are often dangerous to sample for water quality. Thus, pit lakes may be rarely (or never) sampled. This study developed new technology in which water-sampling devices, mounted on an unmanned aerial vehicle (UAV), were used to sample three pit lakes in Nevada, USA, during 1 week in 2017. Water-quality datasets from two of the three pit lakes on public lands, Dexter and Clipper, are presented here. The current conditions of the Dexter pit lake were assessed by examining cation and anion concentration changes that have occurred over a 17-year period since the pit lake was last sampled in 2000. Data gathered during this sampling campaign assessed 2017 conditions of the Dexter and Clipper pit lakes by comparing constituent concentrations to the Nevada Division of Environmental Protection (NDEP) pit lake water-quality requirements, indicating that selenium concentrations exceeded regulatory standards. We compared our sampling data for Dexter lake to prior water-quality data from the Dexter pit lake collected in 1999 and 2000. This comparison for the Dexter pit lake indicates that evapoconcentration may have caused increasing cation and anion concentrations. This UAV sampling approach can potentially incorporate the use of additional multiparameter probes: pH, oxygen concentration, turbidity, or chlorophyll. Some limitations of this UAV water-sampling methodology are battery duration, weather conditions, and payload capacity.


Assuntos
Lagos , Água , Monitoramento Ambiental , Mineração , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...