RESUMO
Biodiversity contributes to the ecological and climatic stability of the Amazon Basin1,2, but is increasingly threatened by deforestation and fire3,4. Here we quantify these impacts over the past two decades using remote-sensing estimates of fire and deforestation and comprehensive range estimates of 11,514 plant species and 3,079 vertebrate species in the Amazon. Deforestation has led to large amounts of habitat loss, and fires further exacerbate this already substantial impact on Amazonian biodiversity. Since 2001, 103,079-189,755 km2 of Amazon rainforest has been impacted by fires, potentially impacting the ranges of 77.3-85.2% of species that are listed as threatened in this region5. The impacts of fire on the ranges of species in Amazonia could be as high as 64%, and greater impacts are typically associated with species that have restricted ranges. We find close associations between forest policy, fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest policies that were initiated in the mid-2000s corresponded to reduced rates of burning. However, relaxed enforcement of these policies in 2019 has seemingly begun to reverse this trend: approximately 4,253-10,343 km2 of forest has been impacted by fire, leading to some of the most severe potential impacts on biodiversity since 2009. These results highlight the critical role of policy enforcement in the preservation of biodiversity in the Amazon.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais/legislação & jurisprudência , Secas , Agricultura Florestal/legislação & jurisprudência , Floresta Úmida , Incêndios Florestais/estatística & dados numéricos , Animais , Brasil , Mudança Climática/estatística & dados numéricos , Florestas , Mapeamento Geográfico , Plantas , Árvores/fisiologia , VertebradosRESUMO
Biodiversity loss is a hallmark of our times, but predicting its consequences is challenging. Ecological interactions form complex networks with multiple direct and indirect paths through which the impacts of an extinction may propagate. Here we show that accounting for these multiple paths connecting species is necessary to predict how extinctions affect the integrity of ecological networks. Using an approach initially developed for the study of information flow, we estimate indirect effects in plant-pollinator networks and find that even those species with several direct interactions may have much of their influence over others through long indirect paths. Next, we perform extinction simulations in those networks and show that although traditional connectivity metrics fail in the prediction of coextinction patterns, accounting for indirect interaction paths allows predicting species' vulnerability to the cascading effects of an extinction event. Embracing the structural complexity of ecological systems contributes towards a more predictive ecology, which is of paramount importance amid the current biodiversity crisis.
Assuntos
Biodiversidade , Extinção Biológica , Ecossistema , Plantas , Polinização , SimbioseRESUMO
The structure of ecological interactions is commonly understood through analyses of interaction networks. However, these analyses may be sensitive to sampling biases with respect to both the interactors (the nodes of the network) and interactions (the links between nodes), because the detectability of species and their interactions is highly heterogeneous. These ecological and statistical issues directly affect ecologists' abilities to accurately construct ecological networks. However, statistical biases introduced by sampling are difficult to quantify in the absence of full knowledge of the underlying ecological network's structure. To explore properties of large-scale ecological networks, we developed the software EcoNetGen, which constructs and samples networks with predetermined topologies. These networks may represent a wide variety of communities that vary in size and types of ecological interactions. We sampled these networks with different mathematical sampling designs that correspond to methods used in field observations. The observed networks generated by each sampling process were then analyzed with respect to the number of components, size of components and other network metrics. We show that the sampling effort needed to estimate underlying network properties depends strongly both on the sampling design and on the underlying network topology. In particular, networks with random or scale-free modules require more complete sampling to reveal their structure, compared to networks whose modules are nested or bipartite. Overall, modules with nested structure were the easiest to detect, regardless of the sampling design used. Sampling a network starting with any species that had a high degree (e.g., abundant generalist species) was consistently found to be the most accurate strategy to estimate network structure. Because high-degree species tend to be generalists, abundant in natural communities relative to specialists, and connected to each other, sampling by degree may therefore be common but unintentional in empirical sampling of networks. Conversely, sampling according to module (representing different interaction types or taxa) results in a rather complete view of certain modules, but fails to provide a complete picture of the underlying network. To reduce biases introduced by sampling methods, we recommend that these findings be incorporated into field design considerations for projects aiming to characterize large species interaction networks.