Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 14(4): 504-15, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21982710

RESUMO

Lipid droplets (LDs) are cellular storage organelles for neutral lipids that vary in size and abundance according to cellular needs. Physiological conditions that promote lipid storage rapidly and markedly increase LD volume and surface. How the need for surface phospholipids is sensed and balanced during this process is unknown. Here, we show that phosphatidylcholine (PC) acts as a surfactant to prevent LD coalescence, which otherwise yields large, lipolysis-resistant LDs and triglyceride (TG) accumulation. The need for additional PC to coat the enlarging surface during LD expansion is provided by the Kennedy pathway, which is activated by reversible targeting of the rate-limiting enzyme, CTP:phosphocholine cytidylyltransferase (CCT), to growing LD surfaces. The requirement, targeting, and activation of CCT to growing LDs were similar in cells of Drosophila and mice. Our results reveal a mechanism to maintain PC homeostasis at the expanding LD monolayer through targeted activation of a key PC synthesis enzyme.


Assuntos
Colina-Fosfato Citidililtransferase/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fosfatidilcolinas/fisiologia , Animais , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/genética , Drosophila , Lipólise , Camundongos , Ácido Oleico/metabolismo , Fosfatidilcolinas/biossíntese , Interferência de RNA , Triglicerídeos/metabolismo
2.
Nat Methods ; 5(8): 711-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18622397

RESUMO

Functional genomic studies in Saccharomyces cerevisiae have contributed enormously to our understanding of cellular processes. Their full potential, however, has been hampered by the limited availability of reagents to systematically study essential genes and the inability to quantify the small effects of most gene deletions on growth. Here we describe the construction of a library of hypomorphic alleles of essential genes and a high-throughput growth competition assay to measure fitness with unprecedented sensitivity. These tools dramatically increase the breadth and precision with which quantitative genetic analysis can be performed in yeast. We illustrate the value of these approaches by using genetic interactions to reveal new relationships between chromatin-modifying factors and to create a functional map of the proteasome. Finally, by measuring the fitness of strains in the yeast deletion library, we addressed an enigma regarding the apparent prevalence of gene dispensability and found that most genes do contribute to growth.


Assuntos
Técnicas Genéticas , Genoma Fúngico/genética , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/genética , Alelos , Bases de Dados de Ácidos Nucleicos , Citometria de Fluxo , Deleção de Genes , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...