Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(4): e2306704, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947789

RESUMO

Cells rely on secreted signaling molecules to coordinate essential biological functions including development, metabolism, and immunity. Unfortunately, such signaling processes remain difficult to measure with sufficient chemical specificity and temporal resolution. To address this need, an aptamer-conjugated hydrogel matrix that enables continuous fluorescent measurement of specific secreted analytes - in two dimensions, in real-time is developed. As a proof of concept, real-time imaging of inter-cellular cyclic adenosine 3',5'-monophosphate (cAMP) signals in Dictyostelium discoideum amoeba cells is performed. A set of aptamer switches that generate a rapid and reversible change in fluorescence in response to cAMP signals is engineered. By combining multiple switches with different dynamic ranges, measure cAMP concentrations spanning three orders of magnitude in a single experiment can be measured. These sensors are embedded within a biocompatible hydrogel on which cells are cultured and their cAMP secretions can be imaged using fluorescent microscopy. Using this aptamer-hydrogel material system, the first direct measurements of oscillatory cAMP signaling that correlate closely with previous indirect measurements are achieved. Using different aptamer switches, this approach can be generalized for measuring other secreted molecules to directly visualize diverse extracellular signaling processes and the biological effects that they trigger in recipient cells.


Assuntos
AMP Cíclico , Dictyostelium , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Dictyostelium/metabolismo , Hidrogéis/metabolismo , Transdução de Sinais , Adenosina/metabolismo , Oligonucleotídeos
2.
Nat Commun ; 14(1): 4192, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443317

RESUMO

Precision medicine requires highly scalable methods of multiplexed biomarker quantification that can accurately describe patient physiology. Unfortunately, contemporary molecular detection methods are generally limited to a dynamic range of sensitivity spanning just 3-4 orders of magnitude, whereas the actual physiological dynamic range of the human plasma proteome spans more than 10 orders of magnitude. Current methods rely on sample splitting and differential dilution to compensate for this mismatch, but such measures greatly limit the reproducibility and scalability that can be achieved-in particular, the effects of non-linear dilution can greatly confound the analysis of multiplexed assays. We describe here a two-pronged strategy for equalizing the signal generated by each analyte in a multiplexed panel, thereby enabling simultaneous quantification of targets spanning a wide range of concentrations. We apply our 'EVROS' strategy to a proximity ligation assay and demonstrate simultaneous quantification of four analytes present at concentrations spanning from low femtomolar to mid-nanomolar levels. In this initial demonstration, we achieve a dynamic range spanning seven orders of magnitude in a single 5 µl sample of undiluted human serum, highlighting the opportunity to achieve sensitive, accurate detection of diverse analytes in a highly multiplexed fashion.


Assuntos
Reprodutibilidade dos Testes , Humanos , Biomarcadores
3.
Nat Commun ; 13(1): 5359, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097164

RESUMO

Enzyme-linked immunosorbent assays (ELISAs) are a cornerstone of modern molecular detection, but the technique still faces notable challenges. One of the biggest problems is discriminating true signal generated by target molecules versus non-specific background. Here, we developed a Single-Molecule Colocalization Assay (SiMCA) that overcomes this problem by employing total internal reflection fluorescence microscopy to quantify target proteins based on the colocalization of fluorescent signal from orthogonally labeled capture and detection antibodies. By specifically counting colocalized signals, we can eliminate the effects of background produced by non-specific binding of detection antibodies. Using TNF-α, we show that SiMCA achieves a three-fold lower limit of detection compared to conventional single-color assays and exhibits consistent performance for assays performed in complex specimens such as serum and blood. Our results help define the pernicious effects of non-specific background in immunoassays and demonstrate the diagnostic gains that can be achieved by eliminating those effects.


Assuntos
Anticorpos , Proteínas , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...