Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 23(4): 638-47, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25592334

RESUMO

Mucopolysaccharidosis (MPS) IIIA is a neuropathic lysosomal storage disease caused by deficiency in N-sulfoglucosamine sulfohydrolase (SGSH). Genome-wide gene expression microarrays in MPS IIIA mice detected broad molecular abnormalities (greater than or equal to twofold, false discovery rate ≤10) in numerous transcripts (314) in the brain and blood (397). Importantly, 22 dysregulated blood transcripts are known to be enriched in the brain and linked to broad neuronal functions. To target the root cause, we used a self-complementary AAVrh74 vector to deliver the human SGSH gene into 4-6 weeks old MPS IIIA mice by an intravenous injection. The treatment resulted in global central nervous system (CNS) and widespread somatic restoration of SGSH activity, clearance of CNS and somatic glycosaminoglycan storage, improved behavior performance, and significantly extended survival. The scAAVrh74-hSGSH treatment also led to the correction of the majority of the transcriptional abnormalities in the brain (95.9%) and blood (97.7%), of which 182 and 290 transcripts were normalized in the brain and blood, respectively. These results demonstrate that a single systemic scAAVrh74-hSGSH delivery mediated efficient restoration of SGSH activity and resulted in a near complete correction of MPS IIIA molecular pathology. This study also demonstrates that blood transcriptional profiles reflect the biopathological status of MPS IIIA, and also respond well to effective treatments.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Hidrolases/genética , Mucopolissacaridose III/terapia , Animais , Terapia Genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL
2.
J Alzheimers Dis ; 43(1): 93-108, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25079797

RESUMO

To date, little is known regarding the etiology and disease mechanisms of Alzheimer's disease (AD). There is a general urgency for novel approaches to advance AD research. In this study, we analyzed blood RNA from female patients with advanced AD and matched healthy controls using genome-wide gene expression microarrays. Our data showed significant alterations in 3,944 genes (≥2-fold, FDR ≤1%) in AD whole blood, including 2,932 genes that are involved in broad biological functions. Importantly, we observed abnormal transcripts of numerous tissue-specific genes in AD blood involving virtually all tissues, especially the brain. Of altered genes, 157 are known to be essential in neurological functions, such as neuronal plasticity, synaptic transmission and neurogenesis. More importantly, 205 dysregulated genes in AD blood have been linked to neurological disease, including AD/dementia and Parkinson's disease, and 43 are known to be the causative genes of 42 inherited mental retardation and neurodegenerative diseases. The detected transcriptional abnormalities also support robust inflammation, profound extracellular matrix impairments, broad metabolic dysfunction, aberrant oxidative stress, DNA damage, and cell death. While the mechanisms are currently unclear, this study demonstrates strong blood-brain correlations in AD. The blood transcriptional profiles reflect the complex neuropathological status in AD, including neuropathological changes and broad somatic impairments. The majority of genes altered in AD blood have not previously been linked to AD. We believe that blood genome-wide transcriptional profiling may provide a powerful and minimally invasive tool for the identification of novel targets beyond Aß and tauopathy for AD research.


Assuntos
Doença de Alzheimer/sangue , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real
3.
Infect Immun ; 81(4): 1221-33, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23381990

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is a commensal microorganism of the human nasopharynx, and yet is also an opportunistic pathogen of the upper and lower respiratory tracts. Host microenvironments influence gene expression patterns, likely critical for NTHi persistence. The host sequesters iron as a mechanism to control microbial growth, and yet iron limitation influences gene expression and subsequent production of proteins involved in iron homeostasis. Careful regulation of iron uptake, via the ferric uptake regulator Fur, is essential in multiple bacteria, including NTHi. We hypothesized therefore that Fur contributes to iron homeostasis in NTHi, is critical for bacterial persistence, and likely regulates expression of virulence factors. Toward this end, fur was deleted in the prototypic NTHi clinical isolate, 86-028NP, and we assessed gene expression regulated by Fur. As expected, expression of the majority of genes that encode proteins with predicted roles in iron utilization was repressed by Fur. However, 14 Fur-regulated genes encode proteins with no known function, and yet may contribute to iron utilization or other biological functions. In a mammalian model of human otitis media, we determined that Fur was critical for bacterial persistence, indicating an important role for Fur-mediated iron homeostasis in disease progression. These data provide a profile of genes regulated by Fur in NTHi and likely identify additional regulatory pathways involved in iron utilization. Identification of such pathways will increase our understanding of how this pathogen can persist within host microenvironments, as a common commensal and, importantly, as a pathogen with significant clinical impact.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus influenzae/patogenicidade , Proteínas Repressoras/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Chinchila , Modelos Animais de Doenças , Deleção de Genes , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/patologia , Haemophilus influenzae/genética , Ferro/metabolismo , Otite Média/microbiologia , Otite Média/patologia , Proteínas Repressoras/genética
4.
J Biol Chem ; 285(53): 41337-47, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21047779

RESUMO

Glycogen synthase kinase-3 (Gsk-3) isoforms, Gsk-3α and Gsk-3ß, are constitutively active, largely inhibitory kinases involved in signal transduction. Underscoring their biological significance, altered Gsk-3 activity has been implicated in diabetes, Alzheimer disease, schizophrenia, and bipolar disorder. Here, we demonstrate that deletion of both Gsk-3α and Gsk-3ß in mouse embryonic stem cells results in reduced expression of the de novo DNA methyltransferase Dnmt3a2, causing misexpression of the imprinted genes Igf2, H19, and Igf2r and hypomethylation of their corresponding imprinted control regions. Treatment of wild-type embryonic stem cells and neural stem cells with the Gsk-3 inhibitor, lithium, phenocopies the DNA hypomethylation at these imprinted loci. We show that inhibition of Gsk-3 by phosphatidylinositol 3-kinase (PI3K)-mediated activation of Akt also results in reduced DNA methylation at these imprinted loci. Finally, we find that N-Myc is a potent Gsk-3-dependent regulator of Dnmt3a2 expression. In summary, we have identified a signal transduction pathway that is capable of altering the DNA methylation of imprinted loci.


Assuntos
Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Regulação Enzimológica da Expressão Gênica , Impressão Genômica , Quinase 3 da Glicogênio Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante , RNA não Traduzido/metabolismo , Receptor IGF Tipo 2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...