Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 292, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474900

RESUMO

BACKGROUND: The accelerating pace of biomedical publication has made it impractical to manually, systematically identify papers containing specific information and extract this information. This is especially challenging when the information itself resides beyond titles or abstracts. For emerging science, with a limited set of known papers of interest and an incomplete information model, this is of pressing concern. A timely example in retrospect is the identification of immune signatures (coherent sets of biomarkers) driving differential SARS-CoV-2 infection outcomes. IMPLEMENTATION: We built a classifier to identify papers containing domain-specific information from the document embeddings of the title and abstract. To train this classifier with limited data, we developed an iterative process leveraging pre-trained SPECTER document embeddings, SVM classifiers and web-enabled expert review to iteratively augment the training set. This training set was then used to create a classifier to identify papers containing domain-specific information. Finally, information was extracted from these papers through a semi-automated system that directly solicited the paper authors to respond via a web-based form. RESULTS: We demonstrate a classifier that retrieves papers with human COVID-19 immune signatures with a positive predictive value of 86%. The type of immune signature (e.g., gene expression vs. other types of profiling) was also identified with a positive predictive value of 74%. Semi-automated queries to the corresponding authors of these publications requesting signature information achieved a 31% response rate. CONCLUSIONS: Our results demonstrate the efficacy of using a SVM classifier with document embeddings of the title and abstract, to retrieve papers with domain-specific information, even when that information is rarely present in the abstract. Targeted author engagement based on classifier predictions offers a promising pathway to build a semi-structured representation of such information. Through this approach, partially automated literature mining can help rapidly create semi-structured knowledge repositories for automatic analysis of emerging health threats.


Assuntos
COVID-19 , Humanos , SARS-CoV-2
2.
Exp Physiol ; 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37120805

RESUMO

NEW FINDINGS: What is the topic of this review? The vagus nerve is a crucial regulator of cardiovascular homeostasis, and its activity is linked to heart health. Vagal activity originates from two brainstem nuclei: the nucleus ambiguus (fast lane) and the dorsal motor nucleus of the vagus (slow lane), nicknamed for the time scales that they require to transmit signals. What advances does it highlight? Computational models are powerful tools for organizing multi-scale, multimodal data on the fast and slow lanes in a physiologically meaningful way. A strategy is laid out for how these models can guide experiments aimed at harnessing the cardiovascular health benefits of differential activation of the fast and slow lanes. ABSTRACT: The vagus nerve is a key mediator of brain-heart signaling, and its activity is necessary for cardiovascular health. Vagal outflow stems from the nucleus ambiguus, responsible primarily for fast, beat-to-beat regulation of heart rate and rhythm, and the dorsal motor nucleus of the vagus, responsible primarily for slow regulation of ventricular contractility. Due to the high-dimensional and multimodal nature of the anatomical, molecular and physiological data on neural regulation of cardiac function, data-derived mechanistic insights have proven elusive. Elucidating insights has been complicated further by the broad distribution of the data across heart, brain and peripheral nervous system circuits. Here we lay out an integrative framework based on computational modelling for combining these disparate and multi-scale data on the two vagal control lanes of the cardiovascular system. Newly available molecular-scale data, particularly single-cell transcriptomic analyses, have augmented our understanding of the heterogeneous neuronal states underlying vagally mediated fast and slow regulation of cardiac physiology. Cellular-scale computational models built from these data sets represent building blocks that can be combined using anatomical and neural circuit connectivity, neuronal electrophysiology, and organ/organismal-scale physiology data to create multi-system, multi-scale models that enable in silico exploration of the fast versus slow lane vagal stimulation. The insights from the computational modelling and analyses will guide new experimental questions on the mechanisms regulating the fast and slow lanes of the cardiac vagus toward exploiting targeted vagal neuromodulatory activity to promote cardiovascular health.

3.
eNeuro ; 9(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927026

RESUMO

Spreading depolarization (SD) is a slow-moving wave of neuronal depolarization accompanied by a breakdown of ion concentration homeostasis, followed by long periods of neuronal silence (spreading depression), and is associated with several neurologic conditions. We developed multiscale (ions to tissue slice) computer models of SD in brain slices using the NEURON simulator: 36,000 neurons (two voltage-gated ion channels; three leak channels; three ion exchangers/pumps) in the extracellular space (ECS) of a slice (1 mm sides, varying thicknesses) with ion (K+, Cl-, Na+) and O2 diffusion and equilibration with a surrounding bath. Glia and neurons cleared K+ from the ECS via Na+/K+ pumps. SD propagated through the slices at realistic speeds of 2-4 mm/min, which increased by as much as 50% in models incorporating the effects of hypoxia or propionate. In both cases, the speedup was mediated principally by ECS shrinkage. Our model allows us to make testable predictions, including the following: (1) SD can be inhibited by enlarging ECS volume; (2) SD velocity will be greater in areas with greater neuronal density, total neuronal volume, or larger/more dendrites; (3) SD is all-or-none: initiating K+ bolus properties have little impact on SD speed; (4) Slice thickness influences SD because of relative hypoxia in the slice core, exacerbated by SD in a pathologic cycle; and (5) SD and high neuronal spike rates will be observed in the core of the slice. Cells in the periphery of the slice near an oxygenated bath will resist SD.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Encéfalo , Simulação por Computador , Computadores , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Humanos , Hipóxia , Potássio/farmacologia , Sódio
4.
Front Neuroinform ; 16: 884046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832575

RESUMO

The need for reproducible, credible, multiscale biological modeling has led to the development of standardized simulation platforms, such as the widely-used NEURON environment for computational neuroscience. Developing and maintaining NEURON over several decades has required attention to the competing needs of backwards compatibility, evolving computer architectures, the addition of new scales and physical processes, accessibility to new users, and efficiency and flexibility for specialists. In order to meet these challenges, we have now substantially modernized NEURON, providing continuous integration, an improved build system and release workflow, and better documentation. With the help of a new source-to-source compiler of the NMODL domain-specific language we have enhanced NEURON's ability to run efficiently, via the CoreNEURON simulation engine, on a variety of hardware platforms, including GPUs. Through the implementation of an optimized in-memory transfer mechanism this performance optimized backend is made easily accessible to users, providing training and model-development paths from laptop to workstation to supercomputer and cloud platform. Similarly, we have been able to accelerate NEURON's reaction-diffusion simulation performance through the use of just-in-time compilation. We show that these efforts have led to a growing developer base, a simpler and more robust software distribution, a wider range of supported computer architectures, a better integration of NEURON with other scientific workflows, and substantially improved performance for the simulation of biophysical and biochemical models.

5.
Front Neuroinform ; 16: 847108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655652

RESUMO

Neuronal activity is the result of both the electrophysiology and chemophysiology. A neuron can be well-represented for the purposes of electrophysiological simulation as a tree composed of connected cylinders. This representation is also apt for 1D simulations of their chemophysiology, provided the spatial scale is larger than the diameter of the cylinders and there is radial symmetry. Higher dimensional simulation is necessary to accurately capture the dynamics when these criteria are not met, such as with wave curvature, spines, or diffusion near the soma. We have developed a solution to enable efficient finite volume method simulation of reaction-diffusion kinetics in intracellular 3D regions in neuron and network models and provide an implementation within the NEURON simulator. An accelerated version of the CTNG 3D reconstruction algorithm transforms morphologies suitable for ion-channel based simulations into consistent 3D voxelized regions. Kinetics are then solved using a parallel algorithm based on Douglas-Gunn that handles the irregular 3D geometry of a neuron; these kinetics are coupled to NEURON's 1D mechanisms for ion channels, synapses, pumps, and so forth. The 3D domain may cover the entire cell or selected regions of interest. Simulations with dendritic spines and of the soma reveal details of dynamics that would be missed in a pure 1D simulation. We describe and validate the methods and discuss their performance.

6.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35443991

RESUMO

Activity-dependent modifications of synaptic efficacies are a cellular substrate of learning and memory. Experimental evidence shows that these modifications are synapse specific and that the long-lasting effects are associated with the sustained increase in concentration of specific proteins like PKMζ However, such proteins are likely to diffuse away from their initial synaptic location and spread out to neighboring synapses, potentially compromising synapse specificity. In this article, we address the issue of synapse specificity during memory maintenance. Assuming that the long-term maintenance of synaptic plasticity is accomplished by a molecular switch, we carry out analytical calculations and perform simulations using the reaction-diffusion package in NEURON to determine the limits of synapse specificity during maintenance. Moreover, we explore the effects of the diffusion and degradation rates of proteins and of the geometrical characteristics of dendritic spines on synapse specificity. We conclude that the necessary conditions for synaptic specificity during maintenance require that molecular switches reside in dendritic spines. The requirement for synaptic specificity when the molecular switch resides in spines still imposes strong limits on the diffusion and turnover of rates of maintenance molecules, as well as on the morphologic properties of synaptic spines. These constraints are quite general and apply to most existing models suggested for maintenance. The parameter values can be experimentally evaluated, and if they do not fit the appropriate predicted range, the validity of this class of maintenance models would be challenged.


Assuntos
Potenciação de Longa Duração , Plasticidade Neuronal , Espinhas Dendríticas/metabolismo , Difusão , Hipocampo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/metabolismo
7.
Front Neuroanat ; 13: 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949034

RESUMO

Precision in neuron names is increasingly needed. We are entering a new era in which classical anatomical criteria are only the beginning toward defining the identity of a neuron as carried in its name. New criteria include patterns of gene expression, membrane properties of channels and receptors, pharmacology of neurotransmitters and neuropeptides, physiological properties of impulse firing, and state-dependent variations in expression of characteristic genes and proteins. These gene and functional properties are increasingly defining neuron types and subtypes. Clarity will therefore be enhanced by conveying as much as possible the genes and properties in the neuron name. Using a tested format of parent-child relations for the region and subregion for naming a neuron, we show how the format can be extended so that these additional properties can become an explicit part of a neuron's identity and name, or archived in a linked properties database. Based on the mouse, examples are provided for neurons in several brain regions as proof of principle, with extension to the complexities of neuron names in the cerebral cortex. The format has dual advantages, of ensuring order in archiving the hundreds of neuron types across all brain regions, as well as facilitating investigation of a given neuron type or given gene or property in the context of all its properties. In particular, we show how the format is extensible to the variety of neuron types and subtypes being revealed by RNA-seq and optogenetics. As current research reveals increasingly complex properties, the proposed approach can facilitate a consensus that goes beyond traditional neuron types.

8.
Front Neuroinform ; 12: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042670

RESUMO

Development of credible clinically-relevant brain simulations has been slowed due to a focus on electrophysiology in computational neuroscience, neglecting the multiscale whole-tissue modeling approach used for simulation in most other organ systems. We have now begun to extend the NEURON simulation platform in this direction by adding extracellular modeling. The extracellular medium of neural tissue is an active medium of neuromodulators, ions, inflammatory cells, oxygen, NO and other gases, with additional physiological, pharmacological and pathological agents. These extracellular agents influence, and are influenced by, cellular electrophysiology, and cellular chemophysiology-the complex internal cellular milieu of second-messenger signaling and cascades. NEURON's extracellular reaction-diffusion is supported by an intuitive Python-based where/who/what command sequence, derived from that used for intracellular reaction diffusion, to support coarse-grained macroscopic extracellular models. This simulation specification separates the expression of the conceptual model and parameters from the underlying numerical methods. In the volume-averaging approach used, the macroscopic model of tissue is characterized by free volume fraction-the proportion of space in which species are able to diffuse, and tortuosity-the average increase in path length due to obstacles. These tissue characteristics can be defined within particular spatial regions, enabling the modeler to account for regional differences, due either to intrinsic organization, particularly gray vs. white matter, or to pathology such as edema. We illustrate simulation development using spreading depression, a pathological phenomenon thought to play roles in migraine, epilepsy and stroke. Simulation results were verified against analytic results and against the extracellular portion of the simulation run under FiPy. The creation of this NEURON interface provides a pathway for interoperability that can be used to automatically export this class of models into complex intracellular/extracellular simulations and future cross-simulator standardization.

9.
J Neurophysiol ; 117(3): 937-949, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927788

RESUMO

Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments.NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Encéfalo/metabolismo , Modelos Neurológicos , Animais , Química Encefálica , Calibragem , Difusão , Enzimas/metabolismo , Humanos , Microeletrodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-28943884

RESUMO

The occlusion of a blood vessel in the brain causes an ischemic stroke. Current treatment relies restoration of blood flow within 3 hours. Substantial research has focused on neuroprotection to spare compromised neural tissue and extend the treatment time window. Despite success with animal models and extensive associated clinical testing, there are still no therapies of this kind. Ischemic stroke is fundamentally a multiscale phenomenon where a cascade of changes triggered by loss of blood flow involves processes at spatial scales from molecular to centimeters with damage occurring in milliseconds to days and recovery into years. Multiscale computational modeling is a technique to assist understanding of the many agents involved in these multitudinous interacting pathways to provide clues for in silico development of multi-target polypharmacy drug cocktails.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...