Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(5): 2516-2542, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35466495

RESUMO

Conventional wastewater treatment relies on a complex microbiota; however, much of this community is still to be characterized. To better understand the origin, dynamics and fate of bacteria within a wastewater treatment plant: untreated primary wastewater, activated sludge and post-treatment effluent were characterized. From 3163 exact sequence variants (ESVs), 860 were annotated to species-level. In primary wastewater, 28% of ESVs were putative bacterial species previously associated with humans, 14% with animals and 5% as common to the environment. Differential abundance analysis revealed significant relative reductions in ESVs from potentially human-associated species from primary wastewater to activated sludge, and significant increases in ESVs from species associated with nutrient cycling. Between primary wastewater and effluent, 51% of ESVs from human-associated species did not significantly differ, and species such as Bacteroides massiliensis and Bacteroides dorei increased. These findings illustrate that activated sludge increased extracellular protease and urease-producing species, ammonia and nitrite oxidizers, denitrifiers and specific phosphorus accumulators. Although many human-associated species declined, some persisted in effluent, including strains of potential health or environmental concern. Species-level microbial assessment may be useful for understanding variation in wastewater treatment efficiency as well as for monitoring the release of microbes into surface water and the wider ecosystem.


Assuntos
Microbiota , Purificação da Água , Bactérias/genética , Esgotos/microbiologia , Águas Residuárias/microbiologia
2.
Aquat Toxicol ; 212: 47-53, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31071656

RESUMO

The increasing production of engineered inorganic nanoparticles (EINPs) elevates their release into aquatic ecosystems raising concerns about associated environmental risks. Numerous investigations indicate sediments as the final sink, facilitating the exposure of benthic species to EINPs. Although reports of sub-lethal EINP effects on benthic species are increasing, the importance of exposure pathways (either waterborne or dietary) is poorly understood. This study investigates the influence of two EINPs, namely titanium dioxide (nTiO2) and silver (nAg), on the benthic model organism Gammarus fossarum specifically addressing the relative relevance of these pathways. For each type of EINP an individual 30-day long bioassay was conducted, applying a two-factorial test design. The factors include the presence or absence of the EINPs (nTiO2: ∼80 nm, 4 mg/L or nAg: ∼30 nm, 0.125 mg/L; n = 30) in the water phase (waterborne), combined with a preceding 6-day long aging of their diet (black alder leaves) also in presence or absence of the EINPs (dietary). Response variables were mortality, food consumption, feces production and energy assimilation. Additionally, the physiological fitness was examined using lipid content and dry weight of the organisms as measures. Results revealed a significantly reduced energy assimilation (up to ∼30%) in G. fossarum induced by waterborne exposure towards nTiO2. In contrast, the dietary exposure towards nAg significantly increased the organisms' energy assimilation (up to ∼50%). Hence, exposure pathway dependent effects of EINPs cannot be generalized and remain particle specific resting upon their intrinsic properties affecting their potential to interact with the surrounding environment. As a result of the different properties of the EINPs used in this study, we clearly demonstrated variations in type and direction of observed effects in G. fossarum. The results of the present study are thus supporting current approaches for nano-specific grouping that might enable an enhanced accuracy in predicting EINP effects facilitating their environmental risk assessment.


Assuntos
Anfípodes/efeitos dos fármacos , Exposição Ambiental , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Titânio/toxicidade , Animais , Biomassa , Metabolismo Energético/efeitos dos fármacos , Fezes , Comportamento Alimentar/efeitos dos fármacos , Lipídeos/análise , Tamanho da Partícula , Folhas de Planta/metabolismo , Poluentes Químicos da Água/toxicidade
3.
Environ Sci Eur ; 30(1): 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416929

RESUMO

This commentary is an introduction for students to the Society of Environmental Toxicology and Chemistry (SETAC) and its Student Advisory Council (SAC). As young academics face challenges while trying to develop their careers, SETAC and the SAC help facilitate student involvement in the various communities within the society that can help to develop the students' careers within the environmental sciences [e.g. the German Language Branch (GLB)]. This piece would also like to emphasize and pay homage to the continual cooperation between the SAC and the ESEU, which provides a scientific platform to communicate internationally and beyond the borders of SETAC, as well as offer heartfelt congratulations from the SAC to the GLB for their "20 Years SETAC GLB" and deep gratitude for their strong advocacy and support of the SAC.

4.
Environ Pollut ; 241: 549-556, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29883956

RESUMO

Waterborne exposure towards fungicides is known to trigger negative effects in aquatic leaf-associated microbial decomposers and leaf-shredding macroinvertebrates. We expected similar effects when these organisms use leaf material from terrestrial plants that were treated with systemic fungicides as a food source since the fungicides may remain within the leaves when entering aquatic systems. To test this hypothesis, we treated black alder (Alnus glutinosa) trees with a tap water control or a systemic fungicide mixture (azoxystrobin, cyprodinil, quinoxyfen, and tebuconazole) at two worst-case application rates. Leaves of these trees were used in an experiment targeting alterations in two functions provided by leaf-associated microorganisms, namely the decomposition and conditioning of leaf material. The latter was addressed via the food-choice response of the amphipod shredder Gammarus fossarum. During a second experiment, the potential impact of long-term consumption of leaves from trees treated with systemic fungicides on G. fossarum was assessed. Systemic fungicide treatment altered the resource quality of the leaf material resulting in trends of increased fungal spore production and an altered community composition of leaf-associated fungi. These changes in turn caused a significant preference of Gammarus for microbially conditioned leaves that had received the highest fungicide treatment over control leaves. This higher food quality ultimately resulted in a higher gammarid growth (up to 300% increase) during the long-term feeding assay. Although the underlying mechanisms still need to be addressed, the present study demonstrates a positive indirect response in aquatic organisms due to systemic pesticide application in a terrestrial system. As the effects from the introduction of plant material treated with systemic fungicides strongly differ from those mediated via other pathways (e.g., waterborne exposure), our study provides a novel perspective of fungicide-triggered effects in aquatic detritus-based food webs.


Assuntos
Alnus/efeitos dos fármacos , Anfípodes/crescimento & desenvolvimento , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Folhas de Planta/toxicidade , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Preferências Alimentares/efeitos dos fármacos , Árvores/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA