Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(19): e110, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32976574

RESUMO

Developing methods for accurate detection of RNA modifications remains a major challenge in epitranscriptomics. Next-generation sequencing-based mapping approaches have recently emerged but, often, they are not quantitative and lack specificity. Pseudouridine (ψ), produced by uridine isomerization, is one of the most abundant RNA modification. ψ mapping classically involves derivatization with soluble carbodiimide (CMCT), which is prone to variation making this approach only semi-quantitative. Here, we developed 'HydraPsiSeq', a novel quantitative ψ mapping technique relying on specific protection from hydrazine/aniline cleavage. HydraPsiSeq is quantitative because the obtained signal directly reflects pseudouridine level. Furthermore, normalization to natural unmodified RNA and/or to synthetic in vitro transcripts allows absolute measurements of modification levels. HydraPsiSeq requires minute amounts of RNA (as low as 10-50 ng), making it compatible with high-throughput profiling of diverse biological and clinical samples. Exploring the potential of HydraPsiSeq, we profiled human rRNAs, revealing strong variations in pseudouridylation levels at ∼20-25 positions out of total 104 sites. We also observed the dynamics of rRNA pseudouridylation throughout chondrogenic differentiation of human bone marrow stem cells. In conclusion, HydraPsiSeq is a robust approach for the systematic mapping and accurate quantification of pseudouridines in RNAs with applications in disease, aging, development, differentiation and/or stress response.


Assuntos
Pseudouridina/isolamento & purificação , RNA Mensageiro , RNA Ribossômico , RNA de Transferência , Análise de Sequência de RNA/métodos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais , Saccharomyces cerevisiae/genética
2.
Stem Cell Res Ther ; 11(1): 316, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711576

RESUMO

BACKGROUND: MSCs isolated from bone marrow (BM-MSCs) have well-established chondrogenic potential, but MSCs derived from the synovial membrane (SM-MSCs) and synovial fluid (SF-MSCs) are thought to possess superior chondrogenicity. This study aimed to compare the in vitro immunophenotype and trilineage and chondrogenic potential of BM-MSCs to SM-MSCs and SF-MSCs. METHODS: MSCs were isolated from bone marrow (BM-MSCs), synovial membrane (SM-MSCs), and synovial fluid (SF-MSCs) extracted from the hips (BM) and knees (SM and SF) of advanced OA patients undergoing arthroplasty. Flow cytometric analysis was used at P2 to evaluate cell stemness. The trilinear differentiation test was performed at P2. At P3, MSC-seeded collagen sponges were cultured in chondrogenic medium for 28 days. Chondrogenic gene expression was quantified by qRT-PCR. Finally, the implants were stained to assess the deposition of proteoglycans and type II collagen. RESULTS: Despite variability, the immunophenotyping of BM-MSCs, SM-MSCs, and SF-MSCs was quite similar. All cell types were positive for the expression of stem cell markers and negative for exclusion markers. Additionally, chondrogenic differentiation and hypertrophy were more pronounced in BM-MSCs (ACAN, SOX9, COL2B, and COL10A) than in SF-MSCs, with SM-MSCs having intermediate characteristics. Concerning matrix synthesis, the three cell types were equipotent in terms of GAG content, while BM-MSC ECM synthesis of type II collagen was superior. CONCLUSIONS: Chondrogenic MSCs are easily collected from SM and SF in advanced human OA, but in vitro chondrogenesis that is superior to age-matched BM-MSCs should not be expected. However, due to intra-articular priming, SF-MSCs did not overexpress hypertrophic gene.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Humanos , Líquido Sinovial , Membrana Sinovial
3.
Stem Cells Int ; 2020: 2487072, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399041

RESUMO

3D bioprinting offers interesting opportunities for 3D tissue printing by providing living cells with appropriate scaffolds with a dedicated structure. Biological advances in bioinks are currently promising for cell encapsulation, particularly that of mesenchymal stem cells (MSCs). We present herein the development of cartilage implants by 3D bioprinting that deliver MSCs encapsulated in an original bioink at low concentration. 3D-bioprinted constructs (10 × 10 × 4 mm) were printed using alginate/gelatin/fibrinogen bioink mixed with human bone marrow MSCs. The influence of the bioprinting process and chondrogenic differentiation on MSC metabolism, gene profiles, and extracellular matrix (ECM) production at two different MSC concentrations (1 million or 2 million cells/mL) was assessed on day 28 (D28) by using MTT tests, real-time RT-PCR, and histology and immunohistochemistry, respectively. Then, the effect of the environment (growth factors such as TGF-ß1/3 and/or BMP2 and oxygen tension) on chondrogenicity was evaluated at a 1 M cell/mL concentration on D28 and D56 by measuring mitochondrial activity, chondrogenic gene expression, and the quality of cartilaginous matrix synthesis. We confirmed the safety of bioextrusion and gelation at concentrations of 1 million and 2 million MSC/mL in terms of cellular metabolism. The chondrogenic effect of TGF-ß1 was verified within the substitute on D28 by measuring chondrogenic gene expression and ECM synthesis (glycosaminoglycans and type II collagen) on D28. The 1 M concentration represented the best compromise. We then evaluated the influence of various environmental factors on the substitutes on D28 (differentiation) and D56 (synthesis). Chondrogenic gene expression was maximal on D28 under the influence of TGF-ß1 or TGF-ß3 either alone or in combination with BMP-2. Hypoxia suppressed the expression of hypertrophic and osteogenic genes. ECM synthesis was maximal on D56 for both glycosaminoglycans and type II collagen, particularly in the presence of a combination of TGF-ß1 and BMP-2. Continuous hypoxia did not influence matrix synthesis but significantly reduced the appearance of microcalcifications within the extracellular matrix. The described strategy is very promising for 3D bioprinting by the bioextrusion of an original bioink containing a low concentration of MSCs followed by the culture of the substitutes in hypoxic conditions under the combined influence of TGF-ß1 and BMP-2.

4.
Stem Cell Res Ther ; 9(1): 329, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486903

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are found in synovial fluid (SF) and can easily be harvested during arthrocentesis or arthroscopy. However, SF-MSC characterization and chondrogenicity in collagen sponges have been poorly documented as well as their hypothetical in vivo chondroprotective properties with intra-articular injections during experimental osteoarthritis (OA). METHODS: SF-MSCs were isolated from human SF aspirates in patients suffering from advanced OA undergoing total knee joint replacements. SF-MSCs at passage 2 (P2) were characterized by flow cytometry for epitope profiling. SF-MSCs at P2 were subsequently cultured in vitro to assess their multilineage potentials. To assess their chondrogenicity, SF-MSCs at P4 were seeded in collagen sponges for 4 weeks under various oxygen tensions and growth factors combinations to estimate their gene profile and matrix production. Also, SF-MSCs were injected into the joints in a nude rat anterior cruciate ligament transection (ACLT) to macroscopically and histologically assess their possible chondroprotective properties,. RESULTS: We characterized the stemness (CD73+, CD90+, CD105+, CD34-, CD45-) and demonstrated the multilineage potency of SF-MSCs in vitro. Furthermore, the chondrogenic induction (TGF-ß1 ± BMP-2) of these SF-MSCs in collagen sponges demonstrated a good capacity of chondrogenic gene induction and extracellular matrix synthesis. Surprisingly, hypoxia did not enhance matrix synthesis, although it boosted chondrogenic gene expression (ACAN, SOX9, COL2A1). Besides, intra-articular injections of xenogenic SF-MSCs did exert neither chondroprotection nor inflammation in ACLT-induced OA in the rat knee. CONCLUSIONS: Advanced OA SF-MSCs seem better candidates for cell-based constructs conceived for cartilage defects rather than intra-articular injections for diffuse OA.


Assuntos
Cartilagem Articular/patologia , Células-Tronco Mesenquimais/citologia , Osteoartrite do Joelho/patologia , Líquido Sinovial/citologia , Cicatrização , Animais , Células Cultivadas , Modelos Animais de Doenças , Glicosaminoglicanos/metabolismo , Humanos , Imunofenotipagem , Injeções Intra-Articulares , Masculino , Células-Tronco Multipotentes/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Nus , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...