Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352527

RESUMO

Even under spontaneous conditions and in the absence of changing environmental demands, awake animals alternate between increased or decreased periods of alertness. These changes in brain state can occur rapidly, on a timescale of seconds, and neuromodulators such as acetylcholine (ACh) are thought to play an important role in driving these spontaneous state transitions. Here, we perform the first simultaneous imaging of ACh sensors and GCaMP-expressing axons in vivo, to examine the spatiotemporal properties of cortical ACh activity and release during spontaneous changes in behavioral state. We observed a high correlation between simultaneously recorded basal forebrain axon activity and neuromodulator sensor fluorescence around periods of locomotion and pupil dilation. Consistent with volume transmission of ACh, increases in axon activity were accompanied by increases in local ACh levels that fell off with the distance from the nearest axon. GRAB-ACh fluorescence could be accurately predicted from axonal activity alone, providing the first validation that neuromodulator axon activity is a reliable proxy for nearby neuromodulator levels. Deconvolution of fluorescence traces allowed us to account for the kinetics of the GRAB-ACh sensor and emphasized the rapid clearance of ACh for smaller transients outside of running periods. Finally, we trained a predictive model of ACh fluctuations from the combination of pupil size and running speed; this model performed better than using either variable alone, and generalized well to unseen data. Overall, these results contribute to a growing understanding of the precise timing and spatial characteristics of cortical ACh during fast brain state transitions.

2.
Neuron ; 106(4): 662-674.e5, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32171388

RESUMO

To take the best actions, we often need to maintain and update beliefs about variables that cannot be directly observed. To understand the principles underlying such belief updates, we need tools to uncover subjects' belief dynamics from natural behavior. We tested whether eye movements could be used to infer subjects' beliefs about latent variables using a naturalistic navigation task. Humans and monkeys navigated to a remembered goal location in a virtual environment that provided optic flow but lacked explicit position cues. We observed eye movements that appeared to continuously track the goal location even when no visible target was present there. Accurate goal tracking was associated with improved task performance, and inhibiting eye movements in humans impaired navigation precision. These results suggest that gaze dynamics play a key role in action selection during challenging visuomotor behaviors and may possibly serve as a window into the subject's dynamically evolving internal beliefs.


Assuntos
Tomada de Decisões/fisiologia , Fixação Ocular/fisiologia , Modelos Neurológicos , Navegação Espacial/fisiologia , Adolescente , Adulto , Animais , Feminino , Humanos , Macaca mulatta , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...