Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(16): 5802-5813, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665509

RESUMO

Poly(vinyl chloride) (PVC) is one of the highest production volume polymers due to its many applications, and it is one of the least recycled due to its chemical structure and frequent formulation with additives. Developing efficient PVC recycling techniques would enable PVC waste to be reused or repurposed in other processes. Within this context, the literature on PVC modification offers considerable insight into versatile reaction pathways, potentially inspiring new approaches for repurposing PVC waste into value-added products. This perspective provides an overview of PVC functionalization through a lens of chemical recycling, discussing various PVC reactivity trends and their applications with a critical assessment and future outlook of their recycling implications.

2.
Chem Asian J ; 18(5): e202201171, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632659

RESUMO

Increasing redox-active species concentrations can improve viability for organic redox flow batteries by enabling higher energy densities, but the required concentrated solutions can become viscous and less conductive, leading to inefficient electrochemical cycling and low material utilization at higher current densities. To better understand these tradeoffs in a model system, we study a highly soluble and stable redox-active couple, N-(2-(2-methoxyethoxy)ethyl)phenothiazine (MEEPT), and its bis(trifluoromethanesulfonyl)imide radical cation salt (MEEPT-TFSI). We measure the physicochemical properties of electrolytes containing 0.2-1 M active species and connect these to symmetric cell cycling behavior, achieving robust cycling performance. Specifically, for a 1 M electrolyte concentration, we demonstrate 94% materials utilization, 89% capacity retention, and 99.8% average coulombic efficiency over 435 h (100 full cycles). This demonstration helps to establish potential for high-performing, concentrated nonaqueous electrolytes and highlights possible failure modes in such systems.

3.
ACS Omega ; 7(44): 40540-40547, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385869

RESUMO

Metal-air batteries are a promising energy storage solution, but material limitations (e.g., metal passivation and low active material utilization) have stymied their adoption. We investigate a solid fuel flow battery (SFFB) architecture that combines the energy density of metal-air batteries with the modularity of redox flow batteries. Specifically, a metallic solid electrochemical fuel (SEF) is spatially separated from the anodic current collector, a dissolved redox mediator (RM) shuttles charges between the two, and an oxygen reduction cathode completes the circuit. This modification decouples power and energy system components while enabling mechanical recharging and mitigating the effects of nonuniform metal oxidation. We conduct an exploratory study showing that metallic SEFs can chemically reduce organic RMs repeatedly. We subsequently operate a proof-of-concept SFFB cell for ca. 25 days as an initial demonstration of technical feasibility. Overall, this work illustrates the potential of this storage concept and highlights scientific and engineering pathways to improvement.

4.
ACS Appl Mater Interfaces ; 13(45): 53746-53757, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34734523

RESUMO

Redox flow batteries (RFBs) are a burgeoning electrochemical platform for long-duration energy storage, but present embodiments are too expensive for broad adoption. Nonaqueous redox flow batteries (NAqRFBs) seek to reduce system costs by leveraging the large electrochemical stability window of organic solvents (>3 V) to operate at high cell voltages and to facilitate the use of redox couples that are incompatible with aqueous electrolytes. However, a key challenge for emerging nonaqueous chemistries is the lack of membranes/separators with suitable combinations of selectivity, conductivity, and stability. Single-ion conducting ceramics, integrated into a flexible polymer matrix, may offer a pathway to attain performance attributes needed for enabling competitive nonaqueous systems. Here, we explore composite polymer-inorganic binder-filler membranes for lithium-based NAqRFBs, investigating two different ceramic compounds with NASICON-type (NASICON: sodium (Na) superionic conductor) crystal structure, Li1.3Al0.3Ti1.7(PO4)3 (LATP) and Li1.4Al0.4Ge0.2Ti1.4(PO4)3 (LAGTP), each blended with a polyvinylidene fluoride (PVDF) polymeric matrix. We characterize the physicochemical and electrochemical properties of the synthesized membranes as a function of processing conditions and formulation using a range of microscopic and electrochemical techniques. Importantly, the electrochemical stability window of the as-prepared membranes lies between 2.2-4.5 V vs Li/Li+. We then integrate select composite membranes into a single electrolyte flow cell configuration and perform polarization measurements with different redox electrolyte compositions. We find that mechanically robust, chemically stable LATP/PVDF composites can support >40 mA cm-2 at 400 mV cell overpotential, but further improvements are needed in selectivity. Overall, the insights gained through this work begin to establish the foundational knowledge needed to advance composite polymer-inorganic membranes/separators for NAqRFBs.

5.
Inorg Chem ; 57(18): 11616-11625, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30160480

RESUMO

Two diimine-bridged Ru(II),Mn(I) complexes with a [(bpy)2Ru(BL)Mn(CO)3Br]2+ architecture, where bpy = 2,2'-bipyridine and BL = 2,3-bis(2-pyridyl)pyrazine (dpp; Ru(dpp)Mn) or 2,2'-bipyrimidine (bpm; Ru(bpm)Mn), were designed to both dissociate multiple equivalents of CO and produce 1O2 when irradiated with visible light. Analysis of the complexes by Fourier transform infrared (FTIR) spectroscopy and cyclic voltammetry suggest a stronger π-accepting ability for bpm compared to that of dpp. Both complexes absorb light throughout the UV and visible regions with lowest energy absorption bands comprising overlapping Ru(dπ)→BL(π*) and Mn(dπ)→BL(π*) singlet metal-to-ligand charge transfer (1MLCT) and Br(p)→dpp(π*) singlet halide-to-ligand charge transfer (1XLCT) transitions. This lowest energy band is centered at 510 nm (ε = 12 000 M-1cm-1) for Ru(dpp)Mn and 553 nm (ε = 3240 M-1cm-1) for Ru(bpm)Mn, and the absorption band extends to nearly 700 nm in each case. Irradiation with visible light (both 470 and 627 nm) releases all three CO ligands, as observed by a combination of UV-vis, FTIR, and gas chromatography. The exchange of the first CO ligand with a solvent molecule occurs more efficiently for Ru(dpp)Mn (Φ470 = 0.22 ± 0.03 in H2O; 0.37 ± 0.06 in CH3CN) than for Ru(bpm)Mn (Φ470 = 0.049 ± 0.008 in H2O and 0.16 ± 0.03 in CH3CN), and the CO dissociation efficiency is unaffected by irradiation wavelength. The differences between Ru(dpp)Mn and Ru(bpm)Mn are proposed to result from the variation in electron density distribution across each formally reduced BL in the Mn(dπ)→BL(π*) 1MLCT excited state based on the nature of BL. Exhaustive photolysis causes the decomplexation of oxidized Mn(II), and the resulting [(bpy)2Ru(BL)]2+ complexes produce 1O2 with quantum yields (ΦΔ) of 0.37 ± 0.03 and 0.16 ± 0.01 for Ru(dpp) and Ru(bpm), respectively, with 460 nm irradiation. This bimetallic architecture presents the opportunity to use visible light to codeliver both CO and 1O2, both of which have biological relevance in photoactivated therapeutics, with spatiotemporal control.


Assuntos
Monóxido de Carbono/química , Luz , Manganês/química , Fármacos Fotossensibilizantes/química , Rutênio/química , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Inorg Chem ; 57(5): 2865-2875, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29446925

RESUMO

The synthesis of two new heteroleptic Cu(I) photosensitizers (PS), [Cu(Xantphos)(NN)]PF6 (NN = biq = 2,2'-biquinoline, dmebiq = 2,2'-biquinoline-4,4'-dimethyl ester; Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene), along with the associated structural, photophysical, and electrochemical properties, are described. The biquinoline diimine ligand extends the PS light absorbing properties into the visible with a maximum absorption at 455 and 505 nm for NN = biq and dmebiq, respectively, in CH2Cl2 solvent. Following photoexcitation, both Cu(I) PS are emissive at low energy, albeit displaying stark differences in their excited state lifetimes (τMLCT = 410 ± 5 (biq) and 44 ± 4 ns (dmebiq)). Cyclic voltammetry indicates a Cu-based HOMO and NN-based LUMO for both complexes, whereby the methyl ester substituents stabilize the LUMO within [Cu(Xantphos)(dmebiq)]+ by ∼0.37 V compared to the unsubstituted analogue. When combined with H2O, N,N-dimethylaniline (DMA) electron donor, and cis-[Rh(NN)2Cl2]PF6 (NN = Me2bpy = 4,4'-dimethyl-2,2'-bipyridine, bpy = 2,2'-bipyridine, dmebpy = 2,2'-bipyridine-4,4'-dimethyl ester) water reduction catalysts (WRC), photocatalytic H2 evolution is only observed using the [Cu(Xantphos)(biq)]+ PS. Furthermore, the choice of cis-[Rh(NN)2Cl2]+ WRC strongly affects the catalytic activity with turnover numbers (TONRh = mol H2 per mol Rh catalyst) of 25 ± 3, 22 ± 1, and 43 ± 3 for NN = Me2bpy, bpy, and dmebpy, respectively. This work illustrates how ligand modification to carefully tune the PS light absorbing, excited state, and redox-active properties, along with the WRC redox potentials, can have a profound impact on the photoinduced intermolecular electron transfer between components and the subsequent catalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...