Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 6(1): e2000526, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837667

RESUMO

New emerging technologies, remarkably miniaturized 3D organ models and microfluidics, enable simulation of the real in vitro microenvironment ex vivo more closely. There are many fascinating features of innovative organ-on-a-chip (OOC) technology, including the possibility of integrating semipermeable and/or stretchable membranes, creating continuous perfusion of fluids into microchannels and chambers (while maintaining laminar flow regime), embedding microdevices like microsensors, microstimulators, micro heaters, or different cell lines, along with other 3D cell culture technologies. OOC systems are designed to imitate the structure and function of human organs, ranging from breathing lungs to beating hearts. This technology is expected to be able to revolutionize cell biology studies, personalized precision medicine, drug development process, and cancer diagnosis/treatment. OOC systems can significantly reduce the cost associated with tedious drug development processes and the risk of adverse drug reactions in the body, which makes drug screening more effective. The review mainly focus on presenting an overview of the several previously developed OOC systems accompanied by subjects relevant to pharmacy-, cancer-, and placenta-on-a-chip. The challenging issues and opportunities related to these systems are discussed, along with a future perspective for this technology.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Dispositivos Lab-On-A-Chip , Humanos , Microfluídica
2.
Int J Biol Macromol ; 183: 1818-1850, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33971230

RESUMO

Polysaccharides are the most abundant naturally available carbohydrate polymers; composed of monosaccharide units covalently connected together. Chitosan is the most widely used polysaccharides because of its exceptional biocompatibility, mucoadhesion, and chemical versatility. However, it suffers from a few drawbacks, e.g. poor mechanical properties and antibacterial activity for biomedical applications. Blending chitosan with natural or synthetic polymers may not merely improve its physicochemical and mechanical properties, but may also improve its bioactivity-induced properties. This review paper summarizes progress in chitosan blends with biodegradable polymers and polysaccharides and their biomedical applications. Blends of chitosan with alginate, starch, cellulose, pectin and dextran and their applications were particularly addressed. The critical and challenging aspects as well as the future ahead of the use of chitosan-based blends were eventually enlightened.


Assuntos
Quitosana/química , Polissacarídeos/química , Alginatos/química , Engenharia Tecidual
3.
Curr Stem Cell Res Ther ; 14(2): 93-116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30207244

RESUMO

Biomedical engineering seeks to enhance the quality of life by developing advanced materials and technologies. Chitosan-based biomaterials have attracted significant attention because of having unique chemical structures with desired biocompatibility and biodegradability, which play different roles in membranes, sponges and scaffolds, along with promising biological properties such as biocompatibility, biodegradability and non-toxicity. Therefore, chitosan derivatives have been widely used in a vast variety of uses, chiefly pharmaceuticals and biomedical engineering. It is attempted here to draw a comprehensive overview of chitosan emerging applications in medicine, tissue engineering, drug delivery, gene therapy, cancer therapy, ophthalmology, dentistry, bio-imaging, bio-sensing and diagnosis. The use of Stem Cells (SCs) has given an interesting feature to the use of chitosan so that regenerative medicine and therapeutic methods have benefited from chitosan-based platforms. Plenty of the most recent discussions with stimulating ideas in this field are covered that could hopefully serve as hints for more developed works in biomedical engineering.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Engenharia Biomédica/tendências , Quitosana/uso terapêutico , Engenharia Tecidual/tendências , Sistemas de Liberação de Medicamentos/tendências , Humanos , Medicina Regenerativa/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...