Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(26): 15951-15957, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730555

RESUMO

Microstructural properties of the beryllium (Be) and silicon (Si) in periodic multilayer mirrors Be/Si with the variation of film thickness were comprehensively determined by Raman scattering. For the thinner films, the structure of Be evolved in the amorphous phase, and it was transformed into the polycrystalline phase for thicker films. The Si films in the periodic structure were condensed into the amorphous phase. The small fraction of nanocrystalline Si particles was distributed within the amorphous phase. A shake-up satellite peak of Si 2s photoelectrons was observed in X-ray photoelectron spectroscopy which suggested the excitation of a plasmon in Si films embedded within Be/Si periodic multilayers. The energy of plasmons was sensitive to the film thickness of Si in the periods which directly corresponds to the particle size. The binding energy of the satellite peak of Si 2s photoelectrons was blueshifted (higher energy) with a decrease in the particle size. This was explained by size dependent quantum confinement of particles.

2.
Phys Chem Chem Phys ; 23(40): 23303-23312, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34632995

RESUMO

In periodic W/Be multilayers, thickness-dependent microstructural and phase modifications were investigated in W and Be layers. In X-ray diffraction, α-W was predominant for the ultrathin layer of W, while ß-W evolved along with the α-W phase for higher film thickness. For the thicker layers, the thermodynamically metastable ß-W vanished and a single well-defined preferably oriented stable α-W phase was observed. The lattice spacing revealed that these phases exist in the tensile stressed condition. With the increase in thickness of Be layers, the blueshift and narrow linewidth of the transverse optical (TO) phonon mode was observed in Raman scattering studies. However, the TO mode was redshifted and the linewidth was further narrowed consistently with an increase in the thermal annealing temperature of the multilayers. The investigation has quantified an increase in compressive strain and reduction of defects with an increase in thickness of the Be layers. However, for thermally annealed samples, the compressive strain in the Be layers was relaxed and crystalline quality was improved.

3.
Phys Chem Chem Phys ; 23(28): 15076-15090, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34231591

RESUMO

The phonon and plasmon excitations and electronic properties of interfaces of periodic W/Si and Si/W multilayer structures were investigated. The Boson band originated from quasilocal surface acoustic phonons for ultrathin Si layers, excited by Raman scattering. In confined Si layers, a small fraction of crystalline Si nanoclusters were embedded within a large volume fraction of amorphous Si (a-Si) nanoclusters. The size of the a-Si nanoclusters was smaller for the thinner Si layer in the periodic layers. The plasmon energy in the Si layer was blueshifted with a decrease in the thickness of this layer. This was explained by the size-dependent quantization of plasmon shift. The valence band spectra comprised a substantial fine structure, which is associated with the interaction of valence orbitals of the W and Si atoms at the interface boundaries. For thinner Si layers, the binding interaction of W5d and Si3p states leads to the splitting of the density of states near the Fermi level in the energy range of 1.5-5 eV. However, the energy splitting with two maxima was observed at 0.7 and 2.4 eV for thicker layers. Thus, the results of X-ray photoelectron spectroscopy have indicated that the interface of W/Si multilayers consists of metal-enriched tungsten silicide. Both the atomic structure and the elemental composition of the silicide were modified with a change in the thickness of the Si layers. This novel investigation could be essential for designing nanomirrors with higher reflectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...