Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 8637, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201345

RESUMO

Phospholipid homeostasis in biological membranes is essential to maintain functions of organelles such as the endoplasmic reticulum. Phospholipid perturbation has been associated to cellular stress responses. However, in most cases, the implication of membrane lipid changes to homeostatic cellular response has not been clearly defined. Previously, we reported that Saccharomyces cerevisiae adapts to lipid bilayer stress by upregulating several protein quality control pathways such as the endoplasmic reticulum-associated degradation (ERAD) pathway and the unfolded protein response (UPR). Surprisingly, we observed certain ER-resident transmembrane proteins, which form part of the UPR programme, to be destabilised under lipid bilayer stress. Among these, the protein translocon subunit Sbh1 was prematurely degraded by membrane stiffening at the ER. Moreover, our findings suggest that the Doa10 complex recognises free Sbh1 that becomes increasingly accessible during lipid bilayer stress, perhaps due to the change in ER membrane properties. Premature removal of key ER-resident transmembrane proteins might be an underlying cause of chronic ER stress as a result of lipid bilayer stress.


Assuntos
Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Bicamadas Lipídicas/metabolismo , Lisina/metabolismo , Fluidez de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Biológicos , Fosfatidilcolinas/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Saccharomyces cerevisiae/metabolismo
2.
Biosci Rep ; 34(4)2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24909749

RESUMO

Stress pathways monitor intracellular systems and deploy a range of regulatory mechanisms in response to stress. One of the best-characterized pathways, the UPR (unfolded protein response), is an intracellular signal transduction pathway that monitors ER (endoplasmic reticulum) homoeostasis. Its activation is required to alleviate the effects of ER stress and is highly conserved from yeast to human. Although metazoans have three UPR outputs, yeast cells rely exclusively on the Ire1 (inositol-requiring enzyme-1) pathway, which is conserved in all Eukaryotes. In general, the UPR program activates hundreds of genes to alleviate ER stress but it can lead to apoptosis if the system fails to restore homoeostasis. In this review, we summarize the major advances in understanding the response to ER stress in Sc (Saccharomyces cerevisiae), Sp (Schizosaccharomyces pombe) and humans. The contribution of solved protein structures to a better understanding of the UPR pathway is discussed. Finally, we cover the interplay of ER stress in the development of diseases.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Saccharomyces cerevisiae/fisiologia , Schizosaccharomyces/fisiologia , Animais , Apoptose/fisiologia , Retículo Endoplasmático/fisiologia , Homeostase/fisiologia , Humanos , Resposta a Proteínas não Dobradas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...