Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2205451, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36373710

RESUMO

Deciphering signaling mechanisms critical for the extended pluripotent stem cell (EPSC) state and primed pluripotency is necessary for understanding embryonic development. Here, a membrane protein, podocalyxin-like protein 1 (PODXL) as being essential for extended and primed pluripotency, is identified. Alteration of PODXL expression levels affects self-renewal, protein expression of c-MYC and telomerase, and induced pluripotent stem cell (iPSC) and EPSC colony formation. PODXL is the first membrane protein reported to regulate de novo cholesterol biosynthesis, and human pluripotent stem cells (hPSCs) are more sensitive to cholesterol depletion than fibroblasts. The addition of exogenous cholesterol fully restores PODXL knockdown-mediated loss of pluripotency. PODXL affects lipid raft dynamics via the regulation of cholesterol. PODXL recruits the RAC1/CDC42/actin network to regulate SREBP1 and SREBP2 maturation and lipid raft dynamics. Single-cell RNA sequencing reveals PODXL overexpression enhanced chimerism between human cells in mouse host embryos (hEPSCs 57%). Interestingly, in the human-mouse chimeras, laminin and collagen signaling-related pathways are dominant in PODXL overexpressing cells. It is concluded that cholesterol regulation via PODXL signaling is critical for ESC/EPSC.

2.
Cells ; 11(7)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406658

RESUMO

Oligodendrocytes are glial cells located in the central nervous system (CNS) that play essential roles in the transmission of nerve signals and in the neuroprotection of myelinated neurons. The dysfunction or loss of oligodendrocytes leads to demyelinating diseases such as multiple sclerosis (MS). To treat demyelinating diseases, the development of a therapy that promotes remyelination is required. In the present study, we established an in vitro method to convert human fibroblasts into induced oligodendrocyte-like cells (iOLCs) in 3 days. The induced cells displayed morphologies and molecular signatures similar to oligodendrocytes after treatment with valproic acid and exposure to the small molecules Y27632, SU9516, and forskolin (FSK). To pursue the development of a cell-free remyelination therapy in vivo, we used a cuprizone-induced demyelinated mouse model. The small molecules (Y27632, SU9516, and FSK) were directly injected into the demyelinated corpus callosum of the mouse brain. This combination of small molecules rescued the demyelination phenotype within two weeks as observed by light and electron microscopy. These results provide a foundation for exploring the development of a treatment for demyelinating diseases via regenerative medicine.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Corpo Caloso , Cuprizona/efeitos adversos , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/genética , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/fisiologia
3.
Neoplasia ; 22(12): 789-799, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142243

RESUMO

BRAF inhibitors were approved for the treatment of BRAF-mutant melanoma. However, most patients acquire the resistance to BRAF inhibitors after several months of treatment. miR-524-5p is considered as a tumor suppressor in many cancers, including melanoma. In this study, we investigated the biological functions of miR-524-5p in melanoma with acquired resistance to BRAF inhibitor and evaluated the endogenous miR-524-5p expression as a biomarker for melanoma. The results showed that the expression of miR-524-5p was 0.481-fold lower in melanoma tissues (n = 117) than in nevus tissues (n = 40). Overexpression of miR-524-5p significantly reduced proliferative, anchorage-independent growth, migratory and invasive abilities of BRAF inhibitor-resistant melanoma cells. Moreover, the introduction of miR-524-5p led to a reduced development of BRAF inhibitor-resistant melanoma in vivo. Remarkably, the MAPK/ERK signaling pathway was decreased after treatment with miR-524-5p. Furthermore, next-generation sequencing analysis implied that the complement system, leukocyte extravasation, liver X receptor/retinoid-X-receptor activation, and cAMP-mediated signaling may be related to miR-524-5p-induced pathways in the resistant cells. The miR-524-5p level was higher on average in complete response and long-term partial response patients than in progressive disease and short-term partial response patients treated with BRAF inhibitors. Our results proposed that miR-524-5p could be considered as a target for treatment BRAF inhibitor-resistant melanoma and a prognostic marker in the response of patients to BRAF inhibitors for melanoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma , Camundongos , Mutação , Interferência de RNA , Vemurafenib/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncol Lett ; 20(3): 2937-2945, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32782610

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-associated mortality worldwide; therefore, there is an emerging need for novel experimental models that allow for the identification and validation of biomarkers for CRC-specific progression. In the present study, a repeated sphere-forming assay was used as a strategy to select a malignant subpopulation from a CRC cell line, namely HCT116. The assay was validated by confirming that canonical stemness markers were upregulated in the sphere state at every generation of the selection assay. The resulting subpopulation, after eight rounds of selection, exhibited increased sphere-forming capacity in vitro and increased tumorigenicity in vivo. Furthermore, dipeptidase 1 (DPEP1) was identified as the major differentially expressed gene in the selected clone, and its depletion suppressed the elevated sphere-forming capacity in vitro and tumorigenicity in vivo. Overall, the present study established an experimental strategy to isolate a malignant subpopulation from a CRC cell line. Additionally, results from the present model revealed that DPEP1 may serve as a promising prognostic biomarker for CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...