Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Ophthalmol ; 99(8): e1517-e1523, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33666371

RESUMO

PURPOSE: To investigate the physics associated with the retention and removal of subretinal perfluorocarbon liquid (PFCL), as inspired by a series of anecdotal cases of spontaneous 'disappearance' of subretinal PFCL. METHODS: The profiles of subretinal PFCL in situ from published OCT images were studied and compared with that of PFCL droplets resting on a hydrophilic surface in vitro. A mathematical model based on Sampson's and Poiseuille's formula was developed to explain how evacuation of subretinal PFCL without aspiration could occur. RESULTS: The mathematical model suggested that in vivo subretinal PFCL can completely evacuate in less than a second via a 41-guage retinal hole. Perfluorocarbon liquid (PFCL) droplets in situ subretinally substantially varied in their aspect ratios (from 0.28 to 2.71) and their contact angles with the retinal pigment epithelium (from 98° to 155°). Conversely, PFCL in vitro had aspect ratios and contact angles close to 1 and 150° respectively. CONCLUSION: This study showed evidence that stretching of the retina to accommodate subretinal PFCL occurs, which might be responsible for the varied profile of the droplets and resultant forces that can cause retinal holes, and spontaneous evacuation of large PFCL droplets. By filling the vitreous cavity with PFCL, a small retinotomy alone might allow spontaneous evacuation without the need for aspiration.


Assuntos
Tamponamento Interno/efeitos adversos , Fluorocarbonos/efeitos adversos , Complicações Pós-Operatórias/etiologia , Doenças Retinianas/cirurgia , Líquido Sub-Retiniano/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Vitrectomia/efeitos adversos , Humanos , Complicações Pós-Operatórias/diagnóstico
2.
Phys Rev E ; 94(6-1): 063115, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085377

RESUMO

This paper aims to look into how system rotation may modify the role played by boundary slip in controlling flow through a rotating channel bounded by stick-slip walls. A semianalytical model is developed for pressure-driven flow in a slit channel that rotates about an axis perpendicular to its walls, which are superhydrophobic surfaces patterned with periodic alternating no-shear and no-slip stripes. The cases where the flow is driven by a pressure gradient parallel or normal to the stripes are considered. The effects of the no-shear area fraction on the velocities and effective slip lengths for the primary and secondary flows are investigated as functions of the rotation rate and the channel height. It is mathematically proved that the secondary flow rate is exactly the same in the two cases, irrespective of whether the primary flow is parallel or normal to the wall stripes. For any rotation speed, there is an optimal value of the no-shear area fraction at which the primary flow rate is maximum. This is a consequence of two competing effects: the no-shear part of the wall may serve to reduce the wall resistance, thereby enhancing the flow especially at low rotation, but it also weakens the formation of the near-wall Ekman layer, which is responsible for pumping the flow especially at high rotation. Wall slip in a rotating environment is to affect flow in the Ekman layer, but not flow in the geostrophic core.

3.
Proc Math Phys Eng Sci ; 471(2179): 20150200, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26345088

RESUMO

An analytical model is presented for low-Rossby-number electro-osmotic flow in a rectangular channel rotating about an axis perpendicular to its own. The flow is driven under the combined action of Coriolis, pressure, viscous and electric forces. Analytical solutions in the form of eigenfunction expansions are developed for the problem, which is controlled by the rotation parameter (or the inverse Ekman number), the Debye parameter, the aspect ratio of the channel and the distribution of zeta potentials on the channel walls. Under the conditions of fast rotation and a thin electric double layer (EDL), an Ekman-EDL develops on the horizontal walls. This is essentially an Ekman layer subjected to electrokinetic effects. The flow structure of this boundary layer as a function of the Ekman layer thickness normalized by the Debye length is investigated in detail in this study. It is also shown that the channel rotation may have qualitatively different effects on the flow rate, depending on the channel width and the zeta potential distributions. Axial and secondary flows are examined in detail to reveal how the development of a geostrophic core may lead to a rise or fall of the mean flow.

4.
Philos Trans A Math Phys Eng Sci ; 370(1964): 1543-71, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22393108

RESUMO

A third-order asymptotic solution in Lagrangian description for nonlinear water waves propagating over a sloping beach is derived. The particle trajectories are obtained as a function of the nonlinear ordering parameter ε and the bottom slope α to the third order of perturbation. A new relationship between the wave velocity and the motions of particles at the free surface profile in the waves propagating on the sloping bottom is also determined directly in the complete Lagrangian framework. This solution enables the description of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the successive deformation of wave profiles and water particle trajectories prior to breaking. A series of experiments are conducted to investigate the particle trajectories of nonlinear water waves propagating over a sloping bottom. It is shown that the present third-order asymptotic solution agrees very well with the experiments.

5.
Invest Ophthalmol Vis Sci ; 52(13): 9721-7, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22110069

RESUMO

PURPOSE: Emulsification is an inherent problem of silicone oil used in vitreoretinal surgery. It has been shown that silicone oil can be made more resistant to emulsification and easier to inject by adding high-molecular-weight components (5% or 10% 423-kDa polydimethylsiloxane [PDMS]) to normal 1000 mPa · s silicone oil. The authors hypothesize that this might also reduce the movement of oil within an eye. METHODS: A model eye chamber made of surface-modified poly(methyl methacrylate) was driven by a computer and a stepper motor to mimic saccadic eye movement. Seven silicone oils with different shear and extensional viscosities were tested. Two sets of eye movements were used: (amplitude 9°, angular velocity 390°/s, duration 50 ms) and (amplitude 90 °, angular velocity 360°/s, duration 300 ms). The movements were captured and analyzed by video recording. RESULTS: The angular velocity of an oil bubble relative to the eye chamber appears to form an exponential relationship with its shear viscosity. Depending on the thickness of the film of aqueous between the eye wall and the oil bubble, the shear rate was estimated to be between 6 and 14 × 10(4) s(-1). The addition of 10% of 423-kDa PDMS to 1000 mPa · s silicone oil significantly reduced the peak relative velocity compared with the base oil of 1000 mPa · s but not 5000 mPa · s. CONCLUSIONS: The addition of high molecular components to a base oil increases its extensional and shear viscosity. Although the extensional viscosity affected the ease with which the oil could be injected, the results showed that it was the shear viscosity that determined the relative velocity between the oil and the wall of the vitreous cavity, and thus the propensity to emulsify.


Assuntos
Dimetilpolisiloxanos/química , Movimentos Sacádicos/fisiologia , Óleos de Silicone/química , Viscosidade , Emulsões , Tamponamento Interno , Modelos Anatômicos , Cirurgia Vitreorretiniana
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(5 Pt 2): 056307, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20365073

RESUMO

Lagrangian transport induced by peristaltic waves traveling on the boundaries of a two-dimensional rectangular closed channel is studied analytically. Based on the Lagrangian description, an asymptotic analysis is performed to generate explicit expressions for the leading-order oscillatory as well as the higher-order time-mean mass transport (or steady streaming) velocities as functions of the wave properties. Two cases are considered. The first case, which is for slow wave frequency or very small wave amplitude such that the steady-streaming Reynolds number (Re_(s)) is very small, recovers the one studied previously in the literature, but with all the results fully presented in the Lagrangian sense. The second case, corresponding to high-frequency pumping such as Re_(s) is order unity, is where it has been handled analytically. It is found that the overall mixing resulting from the mass transport can depend on the phase shift of the two waves, the wave number, the frequency, as well as the amplitude of the waves.


Assuntos
Biofísica/métodos , Peristaltismo , Algoritmos , Fenômenos Biomecânicos , Movimento (Física) , Oscilometria , Reologia/métodos , Fatores de Tempo
7.
J Environ Sci (China) ; 19(6): 696-703, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17969642

RESUMO

The mechanism of flow turbulence, sediment supply conditions, and sediment transport patterns that affect the adsorption of cadmium ions onto sediment particles in natural waters are experimentally simulated and studied both in batch reactors and in a turbulence simulation tank. By changing the agitation conditions, the sediment transport in batch reactors can be categorized into bottom sediment-dominated sediment and suspended sediment-dominated sediment. It is found that the adsorption rate of bottom sediment is much less than that of suspended sediment, but the sediment transport pattern does not affect the final (equilibrium) concentration of dissolved cadmium. This result indicates that the parameters of an adsorption isotherm are the same regardless of the sediment transport pattern. In the turbulence simulation tank, the turbulence is generated by harmonic grid-stirred motions, and the turbulence intensity is quantified in terms of eddy diffusivity, which is equal to 9.84F (F is the harmonic vibration frequency) and is comparable to natural surface water conditions. When the turbulence intensity of flow is low and sediment particles stay as bottom sediment, the adsorption rate is significantly low, and the adsorption quantity compared with that of suspended sediment is negligible in the 6 h duration of the experiment. This result greatly favors the simplification of the numerical modeling of heavy metal pollutant transformation in natural rivers. When the turbulence intensity is high but bottom sediment persists, the rate and extent of descent of the dissolved cadmium concentration in the tank noticeably increase, and the time that is required to reach adsorption equilibrium also increases considerably due to the continuous exchange that occurs between the suspended sediment and the bottom sediment. A comparison of the results of the experiments in the batch reactor and those in the turbulence simulation tank reveals that the adsorption ability of the sediment, and in particular the adsorption rate, is greatly over-estimated in the batch reactor.


Assuntos
Cádmio/química , Sedimentos Geológicos/química , Movimentos da Água , Poluentes Químicos da Água/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...