Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 39(3): e3337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36878664

RESUMO

Chinese hamster ovary (CHO) cells are commonly used for the expression of therapeutic proteins. To increase the titer output of CHO production cultures either specific productivity (Qp), growth, or both need to be increased. Generally, Qp and growth are inversely correlated and cell lines with high Qp have slower growth and vice versa. During the cell line development (CLD) process, the faster-growing cells tend to take over the culture and represent the majority of the isolated clones post single cell cloning. In this study, combinations of regulated and constitutive expression systems were used to supertransfect targeted integration (TI) cell lines expressing the same antibody either constitutively or under-regulated expression. Clone screening with a hybrid expression system (inducible + constitutive) allowed identification and selection of higher titer clones under uninduced conditions, without a negative impact on cell growth during clone selection and expansion. Induction of the regulated promoter(s) during the production phase increased the Qp without negatively affecting growth, resulting in approximately twofold higher titers (from 3.5 to 6-7 g/L). This was also confirmed using a 2-site TI host where the gene of interest was expressed inducibly from Site 1 and constitutively from Site 2. Our findings suggest that such a hybrid expression CLD system can be used to increase production titers, providing a novel approach for expression of therapeutic proteins with high titer market demands.


Assuntos
Anticorpos , Cricetinae , Animais , Células CHO , Cricetulus , Células Clonais , Proliferação de Células/genética , Proteínas Recombinantes/genética
2.
Biotechnol Prog ; 37(4): e3140, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33666334

RESUMO

Cell line development (CLD) by random integration (RI) can be labor intensive, inconsistent, and unpredictable due to uncontrolled gene integration after transfection. Unlike RI, targeted integration (TI) based CLD introduces the antibody-expressing cassette to a predetermined site by recombinase-mediated cassette exchange (RMCE). The key to success for the development of a TI host for therapeutic antibody production is to identify a transcriptionally active hotspot that enables highly efficient RMCE and antibody expression with good stability. In this study, a genome wide search for hotspots in the Chinese hamster ovary (CHO)-K1-M genome by either RI or PiggyBac (PB) transposase-based integration has been described. Two CHO-K1-M derived TI host cells were established with the Cre/Lox RMCE system and are described here. Both TI hosts contain a GFP-expressing landing pad flanked by two incompatible LoxP recombination sites (L3 and 2L). In addition, a third incompatible LoxP site (LoxFAS) is inserted in the GFP landing pad to enable an innovative two-plasmid based RMCE strategy, in which two separate vectors can be targeted to a single locus simultaneously. Cell lines generated by the TI system exhibit comparable or higher productivity, better stability and fewer sequence variant (SV) occurrences than the RI cell lines.


Assuntos
Integrases , Recombinases , Animais , Células CHO , Cricetinae , Cricetulus , Integrases/genética , Recombinases/genética , Transgenes
3.
Biotechnol Prog ; 36(4): e2967, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31965756

RESUMO

Historically, therapeutic protein production in Chinese hamster ovary (CHO) cells has been accomplished by random integration (RI) of expression plasmids into the host cell genome. More recently, the development of targeted integration (TI) host cells has allowed for recombination of plasmid DNA into a predetermined genomic locus, eliminating one contributor to clone-to-clone variability. In this study, a TI host capable of simultaneously integrating two plasmids at the same genomic site was used to assess the effect of antibody heavy chain and light chain gene dosage on antibody productivity. Our results showed that increasing antibody gene copy number can increase specific productivity, but with diminishing returns as more antibody genes are added to the same TI locus. Random integration of additional antibody DNA copies in to a targeted integration cell line showed a further increase in specific productivity, suggesting that targeting additional genomic sites for gene integration may be beneficial. Additionally, the position of antibody genes in the two plasmids was observed to have a strong effect on antibody expression level. These findings shed light on vector design to maximize production of conventional antibodies or tune expression for proper assembly of complex or bispecific antibodies in a TI system.


Assuntos
Anticorpos/genética , Formação de Anticorpos/genética , Células Clonais/imunologia , Genômica , Animais , Anticorpos/imunologia , Células CHO , Efeitos da Posição Cromossômica/genética , Cricetulus , Dosagem de Genes/genética , Dosagem de Genes/imunologia , Genoma/genética , Humanos , Plasmídeos/genética , Transgenes
4.
Biotechnol Prog ; 33(6): 1449-1455, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28371489

RESUMO

In the biopharmaceutical industry, a clonally derived cell line is typically used to generate material for investigational new drug (IND)-enabling toxicology studies. The same cell line is then used to generate material for clinical studies. If a pool of clones can be used to produce material for IND-enabling toxicology studies (Pool for Tox (PFT) strategy) during the time a lead clone is being selected for clinical material production, the toxicology studies can be accelerated significantly (approximately 4 months at Genentech), leading to a potential acceleration of 4 months for the IND submission. We explored the feasibility of the PFT strategy with three antibodies-mAb1, mAb2, and mAb3-at the 2 L scale. For each antibody, two lead cell lines were identified that generated material with similar product quality to the material generated from the associated pool. For two antibody molecules, mAb1 and mAb2, the material generated by the lead cell lines from 2 L bioreactors was tested in an accelerated stability study and was shown to have stability comparable to the material generated by the associated pool. Additionally, we used this approach for two antibody molecules, mAb4 and mAb5, at Tox and GMP production. The materials from the Tox batch at 400 L scale and three GMP batches at 2000 L scale have comparable product quality attributes for both molecules. Our results demonstrate the feasibility of using a pool of clonally derived cell lines to generate material of similar product quality and stability for use in IND-enabling toxicology studies as was derived from the final production clone, which enabled significant acceleration of timelines into clinical development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1449-1455, 2017.


Assuntos
Anticorpos Monoclonais/biossíntese , Reatores Biológicos , Células CHO/metabolismo , Proteínas Recombinantes/biossíntese , Animais , Anticorpos Monoclonais/genética , Células Clonais/metabolismo , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Proteínas Recombinantes/genética , Toxicologia
5.
MAbs ; 8(8): 1487-1497, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27680183

RESUMO

Bispecific antibodies have shown promise in the clinic as medicines with novel mechanisms of action. Lack of efficient production of bispecific IgGs, however, has limited their rapid advancement. Here, we describe a single-reactor process using mammalian cell co-culture production to efficiently produce a bispecific IgG with 4 distinct polypeptide chains without the need for parallel processing of each half-antibody or additional framework mutations. This method resembles a conventional process, and the quality and yield of the monoclonal antibodies are equal to those produced using parallel processing methods. We demonstrate the application of the approach to diverse bispecific antibodies, and its suitability for production of a tissue specific molecule targeting fibroblast growth factor receptor 1 and klotho ß that is being developed for type 2 diabetes and other obesity-linked disorders.


Assuntos
Anticorpos Biespecíficos/biossíntese , Reatores Biológicos , Técnicas de Cocultura/métodos , Imunoglobulina G/biossíntese , Animais , Anticorpos Biespecíficos/imunologia , Células CHO , Cricetinae , Cricetulus , Humanos , Imunoglobulina G/imunologia , Proteínas Klotho , Mamíferos , Proteínas de Membrana/imunologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/imunologia
6.
J Biotechnol ; 153(1-2): 27-34, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21392546

RESUMO

Large-scale fed-batch cell culture processes of CHO cells are the standard platform for the clinical and commercial production of monoclonal antibodies. Lactate is one of the major by-products of CHO fed-batch culture. In pH-controlled bioreactors, accumulation of high levels of lactate is accompanied by high osmolality due to the addition of base to control pH of the cell culture medium, potentially leading to lower cell growth and lower therapeutic protein production during manufacturing. Lactate dehydrogenase (LDH) is an enzyme that catalyzes the conversion of the substrate, pyruvate, into lactate and many factors including pyruvate concentration modulate LDH activity. Alternately, pyruvate can be converted to acetyl-CoA by pyruvate dehydrogenases (PDHs), to be metabolized in the TCA cycle. PDH activity is inhibited when phosphorylated by pyruvate dehydrogenase kinases (PDHKs). In this study, we knocked down the gene expression of lactate dehydrogenase A (LDHa) and PDHKs to investigate the effect on lactate metabolism and protein production. We found that LDHa and PDHKs can be successfully downregulated simultaneously using a single targeting vector carrying small inhibitory RNAs (siRNA) for LDHa and PDHKs. Moreover, our fed-batch shake flask evaluation data using siRNA-mediated LDHa/PDHKs knockdown clones showed that downregulating LDHa and PDHKs in CHO cells expressing a therapeutic monoclonal antibody reduced lactate production, increased specific productivity and volumetric antibody production by approximately 90%, 75% and 68%, respectively, without appreciable impact on cell growth. Similar trends of lower lactate level and higher antibody productivity on average in siRNA clones were also observed from evaluations performed in bioreactors.


Assuntos
Formação de Anticorpos , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Formação de Anticorpos/efeitos dos fármacos , Reatores Biológicos , Células CHO , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , Meios de Cultura/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Glucose/metabolismo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , L-Lactato Desidrogenase/genética , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Titulometria
7.
J Immunol Methods ; 365(1-2): 132-41, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21185301

RESUMO

Clinical response to the anti-CD20 antibody rituximab has been demonstrated to correlate with the polymorphism in the FcγRIIIa receptor where patients homozygous for the higher affinity V158 allotype showed a better response rate. This finding suggests that engineering of anti-CD20 for increased FcγRIIIa affinity could result in improved clinical outcome. To identify variants with increased affinity to FcγRIIIa, we developed quantitative assays using soluble receptors as well as engineered cell lines expressing FcγRI or FcγRIIIa on the cell surface. We assayed a set of anti-CD20 IgG(1) variants that had identical Fab regions, but alterations in the Fc regions, in both the soluble receptor-based and cell-based FcγRIIIa binding assays. We obtained similar relative binding affinity increases and assay precisions. The increase in affinity for FcγRIIIa correlated with the increase in activity in the antibody-dependent cellular cytotoxicity assay. These variants had unaltered FcγRI binding. In addition to Fcγ receptors, IgG also binds to FcRn, the receptor responsible for the long circulating half-life of IgG. The mutations in the anti-CD20 variants were previously found not to affect FcRn binding in the soluble receptor-based assays; consequently, we used anti-Her2 variants with different binding affinities to FcRn to study FcRn binding assays. We generated a cell line expressing FcRn on the cell surface to measure IgG binding and obtained similar ranking of these anti-Her2 variants in the cell-based and the soluble receptor-based FcRn binding assays. In conclusion, both the soluble receptor-based and cell-based binding assays can be used to identify IgG(1) variants with increased affinity to FcγRIIIa and unaltered affinity to FcγRI and FcRn.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/genética , Anticorpos Monoclonais Murinos/metabolismo , Afinidade de Anticorpos , Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD20/imunologia , Linfócitos B/imunologia , Células CHO , Membrana Celular/imunologia , Cricetinae , Cricetulus , Ensaio de Imunoadsorção Enzimática , Variação Genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Técnicas In Vitro , Células Matadoras Naturais/imunologia , Cinética , Camundongos , Camundongos Transgênicos , Ligação Proteica , Engenharia de Proteínas , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Receptores Fc/genética , Receptores de IgG/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rituximab , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...