Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Dent Sci ; 19(2): 1028-1035, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618058

RESUMO

Background/purpose: Oral submucous fibrosis (OSF) is a precancerous lesion in the oral cavity, commonly results from the Areca nut chewing habit. Arecoline, the main component of Areca nut, is known to stimulate the activation of myofibroblasts, which can lead to abnormal collagen I deposition. Meanwhile, Resveratrol is a non-flavonoid phenolic substance that can be naturally obtained from various berries and foods. Given that resveratrol has significant anti-fibrosis traits in other organs, but little is known about its effect on OSF, this study aimed to investigate the therapeutic impact of resveratrol on OSF and its underlying mechanism. Materials and methods: The cytotoxicity of resveratrol was tested using normal buccal mucosal fibroblasts (BMFs). Myofibroblast phenotypes such as collagen contractile, enhanced migration, and wound healing capacities in dose-dependently resveratrol-treated fBMFs were examined. Results: Current results showed that arecoline induced cell migration and contractile activity in BMFs as well as upregulated the expressions of α-SMA, type I collagen, and ZEB1 markers. Resveratrol intervention, on the other hand, was shown to inhibit arecoline-induced myofibroblast activation and reduce myofibroblast hallmarks and EMT markers. Additionally, resveratrol was also demonstrated to restore the downregulated miR-200a in the arecoline-stimulated cells. Conclusion: In a nutshell, these findings implicate that resveratrol may have an inhibitory influence on arecoline-induced fibrosis via the regulation of miR-200a. Hence, resveratrol may be used as a therapeutic strategy for OSF intervention.

2.
J Dent Sci ; 19(2): 1135-1142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618083

RESUMO

Background/purpose: Periodontitis is an inflammatory condition of the tooth-supporting structures triggered by the host's immune response towards the bacterial deposits around the teeth. It is well acknowledged that pro-inflammatory interleukin (IL)-6, IL-8, MCP-1 as well as the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, are the key modulators in the activation of this response. Erbium-doped yttrium-aluminium-garnet (Er:YAG) laser, a solid-state crystal laser have been commonly used in the treatment of periodontal diseases. However, little is understood about the molecular mechanism of the Er:YAG laser, especially in targeting the host immune response brought on by periodontal pathogens. Hence, the current study focused on the protective effects of Er:YAG laser on periodontitis in-vitro in terms of pro-inflammatory cytokines, chemokines and NLRP3 inflammasome expressions. Materials and methods: Human periodontal ligament fibroblast (PDLFs) were first stimulated with lipopolysaccharides (LPS) from P. gingivalis (Pg-LPS) to simulate periodontitis. Cells were then irradiated with Er:YAG laser of ascending energy densities (3.6-6.3 J/cm2), followed by cell proliferation and wound healing assay. Next, the effects of Er:YAG laser on the expressions of IL-6, IL-8, MCP-1, NLRP3, and cleaved GSDMD were examined. Results: Pg-LPS was found to reduce cell's proliferation rate and wound healing ability in PDLFs and these were rescued by Er:YAG laser irradiation. In addition, LPS stimuli resulted in a marked upregulation in the secretion of IL-6, IL-8 and MCP-1 as well as the mRNA and protein expression of NLRP3 and cleaved-GSDMD protein whereas Er:YAG laser suppressed the elicited phenomena. Conclusion: To our knowledge, this is the first study to look into the laser's implication on the NLRP3 inflammasome in periodontitis models. Our study reveals a crucial role of Er:YAG laser in ameliorating periodontitis in-vitro through the modulation of IL-6, IL-8, MCP-1 and the NLRP3 inflammasome and highlights that the control of the NLRP3 inflammasome may become a potential approach for periodontitis.

3.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396793

RESUMO

Periodontitis is a significant health concern for individuals with diabetes mellitus (DM), characterized by inflammation and periodontium loss. Hyperglycaemia in DM exacerbates susceptibility to periodontitis by inducing inflammaging in the host immune system. The use of erbium-doped yttrium-aluminum-garnet laser (ErL) in periodontitis treatment has gained attention, but its impact on diabetic-associated periodontitis (DP) and underlying mechanisms remain unclear. In this study, we simulated DP by exposing human periodontal ligament fibroblasts (PDLFs) to advanced glycation end products (AGEs) and lipopolysaccharides from P. gingivalis (Pg-LPS). Subsequently, we evaluated the impact of ErL on the cells' wound healing and assessed their inflammaging markers. ErL treatment promoted wound healing and suppressed inflammaging activities, including cell senescence, IL-6 secretion, and p65 phosphorylation. Moreover, the laser-targeted cells were observed to have upregulated expression of CTBP1-AS2, which, when overexpressed, enhanced wound healing ability and repressed inflammaging. Moreover, bioinformatic analysis revealed that CTBP1-AS2 acted as a sponge for miR155 and upregulated SIRT1. In conclusion, ErL demonstrated the ability to improve wound healing and mitigate inflammaging in diabetic periodontal tissue through the CTBP1-AS2/miR-155/SIRT1 axis. Targeting this axis could represent a promising therapeutic approach for preventing periodontitis in individuals with DM.


Assuntos
Diabetes Mellitus , Lasers de Estado Sólido , MicroRNAs , Periodontite , Humanos , Lasers de Estado Sólido/uso terapêutico , Sirtuína 1/genética , Periodontite/metabolismo , MicroRNAs/genética
5.
J Dent Sci ; 19(1): 268-275, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303825

RESUMO

Background/purpose: Diabetes mellitus (DM) and periodontal disease are both prevalent and chronic inflammatory disorders that have significant health impact. Many studies have pointed out that advanced glycation end-products (AGEs) in DM induces inflammaging, which is a pre-aging and hyperinflammatory condition, and it has been linked to a greater likelihood in developing periodontitis. Inflammaging in DM has been shown to be driven by AGEs-induced cell senescence, inflammatory cytokines, and oxidative stress, resulting in the degradation of periodontium. Quercetin has shown abilities to decrease inflammation and oxidative stress in a variety of tissues, however, the effect in diabetic periodontitis remains uncertain. Thus, the aim of this study was to investigate its impacts on inflammaging in diabetic periodontitis. Materials and methods: We examined cell proliferation in human gingival fibroblasts (HGF), wound healing, IL-6 and IL-8 secretions, cellular senescence expression, and the formation of reactive oxygen species (ROS) in response to AGE stimulation with and without Quercetin intervention. Following that, we looked into NF-κß activity to see if Quercetin mediate its effects via this pro-inflammatory signaling. Results: Quercetin at 20 µM and below did not have any impact on HGFs' cell proliferation rate. Quercetin intervention improved the AGEs-impaired wound healing, in addition to the attenuation of AGEs-induced ROS in a dose-dependent pattern. Moreover, Quercetin therapy dose-dependently inhibited AGEs-induced cell senescence activity along with its senescence associated secretion phenotype (SASP) secretions such as IL-6 and IL-8. Western blot analysis indicated that Quercetin was able to reverse the phosphorylation of p65 and Iκß in AGEs-stimulated HGFs, demonstrating it can modulate NF-κß pathway. Conclusion: Accumulation of AGEs can elicit inflammaging in HGFs, as seen by increased pro-inflammatory cytokines, cell senescence expression and oxidative stress. The results proposed that Quercetin is able to ameliorate inflammaging in diabetic periodontitis and improve wound healing via the suppression of NF-κß pathway and hence, may be a promising approach for treatment of diabetes-associated periodontitis.

7.
J Dent Sci ; 18(2): 666-673, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021258

RESUMO

Background/purpose: :Both periodontal disease and diabetes mellitus (DM) are long-term inflammatory disorders that are highly prevalent and have a significant health impact. Inflammaging, a state of pre-aging and hyperinflammatory state has been acknowledged for its role in DM patients to have heightened risk of periodontitis. Numerous evidences revealed that inflammaging contributed by cell senescence, acceleration of inflammation and oxidative stress participates in the destruction of periodontium in DM. Abilities of vitamin D in suppressing inflammation and oxidative stress have been revealed in a range of tissues, however in DM's gingival cells, the effect remain undefined. Materials and methods: : Under the stimulation of advanced glycation end-products (AGEs), we assessed the cell proliferation in human gingival fibroblast (HGF), IL-6 and IL-8 secretions, cellular senescence expression and generation of reactive oxygen species (ROS) with or without vitamin D intervention. Following that, we examined the expression of Nrf2 and HO-1 to see if vitamin D was able to modulate the anti-oxidant signaling. A knockdown experiment was then conducted to proof the participation of Nrf2 on the secretion of pro-inflammatory IL-6 and IL-8. Results: : Following the treatment of vitamin D, AGEs-elicited IL-6 and IL-8 production and cell senescence were dose-dependently repressed. Moreover, vitamin D attenuated AGEs-induced ROS in a dose-dependent pattern. Results from qRT-PCR demonstrated vitamin D reversed the suppression of Nrf2 and HO-1 induced by AGEs. Our findings revealed that the anti-inflammatory and anti-oxidant effect in vitamin D was mediated via the upregulation of Nrf2 expression. Conclusion: : These data showed that high levels of AGEs in the gingiva lead to inflammaging reflected by increased pro-inflammatory cytokines, cell senescence expression and oxidative stress. Vitamin D supplementation can reduce oxidative stress and inflammation via the upregulation of Nrf2 signaling and hence, may be a potential approach for treatment of diabetes-associated periodontitis.

8.
J Dent Sci ; 18(2): 659-665, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021274

RESUMO

Background/purpose: Diabetes mellitus (DM) is a chronic metabolic disorder that affects millions of people worldwide. A growing evidence suggests that hyperglycemia in DM causes a pre-aging and pro-inflammatory condition known as inflammaging, which increases periodontitis susceptibility. Bromelain has been demonstrated to have anti-inflammatory and anti-aging properties in variety of tissues, but its effects on diabetic periodontitis remain unclear. Thus, the aim of this study is to investigate the its Bromelain's impact in diabetic periodontitis in terms of inflammation and senescence activity. Materials and methods: We assessed the wound healing capacity, production of pro-inflammatory cytokines Interleukin (IL)-6 and IL-8 and senescence marker p16 in human gingival fibroblasts (HGFs) in response to Advanced glycation end-products (AGEs) stimulant, with or without Bromelain treatment. The expression of p65, p-ERK, and p-p38 were also examined to elucidate whether Bromelain's anti-inflammaging activity is mediated through NF-κB and MAPK/ERK signaling pathway. Results: Bromelain concentrations ranging from 2.5 to 20 g/mL had no adverse effect on HGF cell proliferation. Bromelain improved wound healing in HGFs with AGEs stimulation. In addition, Bromelain suppressed the production of pro-inflammatory cytokines IL-6 and IL-8 in HGFs elicited by AGEs. Meanwhile, Bromelain treatment also inhibited the senescence activity and expression of p16 in AGEs-stimulated HGFs. Western blot analysis indicated that the upregulation of p-ERK, p-p38 and p65 induced by AGEs were inhibited by Bromelain in HGFs. Conclusion: These data suggest that excessive AGEs in the gingiva may lead to the accumulation of pro-inflammatory cytokines and marked senescence activity. Bromelain application may be helpful in enhancing wound healing by suppressing inflammaging via downregulation of NF-κB and MAPK/ERK signaling pathways in DM individuals with periodontal disease.

9.
J Clin Med ; 11(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35806899

RESUMO

Diabetes mellitus (DM) is a major worldwide health burden. DM is a metabolic disease characterized by chronic hyperglycemia, and if left untreated, can lead to various complications. Individuals with uncontrolled DM are more susceptible to periodontitis due to both a hyper-inflammatory host response and an impaired immune response. Periodontitis, on the other hand, may exacerbate DM by increasing both local and systemic inflammatory components of DM-related complications. The current standard for periodontal treatment in diabetes-associated periodontitis (DP) focuses mostly on reducing bacterial load and less on controlling the excessive host response, and hence, may not be able to resolve DP completely. Over the past decade, natural compounds have emerged as an adjunct approach for modulating the host immune response with the hope of curing DP. The anti-oxidant, anti-inflammatory, and anti-diabetic characteristics of natural substances are well-known, and they can be found in regularly consumed foods and drinks, as well as plants. The pathophysiology of DP and the treatment benefits of various bioactive extracts for DP will be covered in this review.

11.
J Formos Med Assoc ; 121(5): 1008-1011, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34452782

RESUMO

Periodontitis is a progressive inflammation condition and a primary cause of tooth loss in adults. As one of the abundant cell types in the periodontium, periodontal ligament fibroblasts (PDLFs) play an integral role in the maintenance and regeneration of periodontal tissue. Our previous work has shown that the application of Er:YAG laser increased the cell proliferation and migratory capacity of PDLFs via induction of galectin-7. In the present study, we aimed to evaluate if the forced expression of galectin-7 directly affected the cellular phenotypes of PDLFs. Our results showed that the cell proliferation, transwell migration, invasion, and wound healing capacities were all upregulated in PDLFs with the ectopic expression of galectin-7. These results suggest that therapeutic approaches to enhance the expression of galectin-7 in periodontium may accelerate tissue regeneration by recruiting more PDLFs to the injured site.


Assuntos
Fibroblastos , Ligamento Periodontal , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Galectinas , Humanos , Sistema de Sinalização das MAP Quinases , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...