Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(11): 3275-9, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25675476

RESUMO

The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies.

2.
Nat Commun ; 3: 1326, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23271659

RESUMO

Fundamental primitives such as bit commitment and oblivious transfer serve as building blocks for many other two-party protocols. Hence, the secure implementation of such primitives is important in modern cryptography. Here we present a bit commitment protocol that is secure as long as the attacker's quantum memory device is imperfect. The latter assumption is known as the noisy-storage model. We experimentally executed this protocol by performing measurements on polarization-entangled photon pairs. Our work includes a full security analysis, accounting for all experimental error rates and finite size effects. This demonstrates the feasibility of two-party protocols in this model using real-world quantum devices. Finally, we provide a general analysis of our bit commitment protocol for a range of experimental parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...