Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 27(5): 2155-2165, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37022004

RESUMO

Stress is an inevitable part of modern life. While stress can negatively impact a person's life and health, positive and under-controlled stress can also enable people to generate creative solutions to problems encountered in their daily lives. Although it is hard to eliminate stress, we can learn to monitor and control its physical and psychological effects. It is essential to provide feasible and immediate solutions for more mental health counselling and support programs to help people relieve stress and improve their mental health. Popular wearable devices, such as smartwatches with several sensing capabilities, including physiological signal monitoring, can alleviate the problem. This work investigates the feasibility of using wrist-based electrodermal activity (EDA) signals collected from wearable devices to predict people's stress status and identify possible factors impacting stress classification accuracy. We use data collected from wrist-worn devices to examine the binary classification discriminating stress from non-stress. For efficient classification, five machine learning-based classifiers were examined. We explore the classification performance on four available EDA databases under different feature selections. According to the results, Support Vector Machine (SVM) outperforms the other machine learning approaches with an accuracy of 92.9 for stress prediction. Additionally, when the subject classification included gender information, the performance analysis showed significant differences between males and females. We further examine a multimodal approach for stress classifications. The results indicate that wearable devices with EDA sensors have a great potential to provide helpful insight for improved mental health monitoring.


Assuntos
Dispositivos Eletrônicos Vestíveis , Punho , Masculino , Feminino , Humanos , Punho/fisiologia , Resposta Galvânica da Pele , Monitorização Ambulatorial/métodos , Aprendizado de Máquina
2.
IEEE Syst J ; 15(4): 5367-5378, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35582390

RESUMO

While contact tracing is of paramount importance in preventing the spreading of infectious diseases, manual contact tracing is inefficient and time consuming as those in close contact with infected individuals are informed hours, if not days, later. This article proposes a smart contact tracing (SCT) system utilizing the smartphone's Bluetooth low energy signals and machine learning classifiers to automatically detect those possible contacts to infectious individuals. SCT's contribution is two-fold: a) classification of the user's contact as high/low-risk using precise proximity sensing, and b) user anonymity using a privacy-preserving communication protocol. To protect the user's privacy, both broadcasted and observed signatures are stored in the user's smartphone locally and only disseminate the stored signatures through a secure database when a user is confirmed by public health authorities to be infected. Using received signal strength each smartphone estimates its distance from other user's phones and issues real-time alerts when social distancing rules are violated. Extensive experimentation utilizing real-life smartphone positions and a comparative evaluation of five machine learning classifiers indicate that a decision tree classifier outperforms other state-of-the-art classification methods with an accuracy of about 90% when two users carry their smartphone in a similar manner. Finally, to facilitate research in this area while contributing to the timely development, the dataset of six experiments with about 123 000 data points is made publicly available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...