Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37103800

RESUMO

Membrane application is widespread in water filtration to remove natural organic matter (NOM), especially humic acid. However, there is a significant concern in membrane filtration, which is fouling, which will cause a reduction in the membrane life span, a high energy requirement, and a loss in product quality. Therefore, the effect of a TiO2/PES mixed matrix membrane on different concentrations of TiO2 photocatalyst and different durations of UV irradiation was studied in removing humic acid to determine the anti-fouling and self-cleaning effects. The TiO2 photocatalyst and TiO2/PES mixed matrix membrane synthesised were characterised using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), contact angle, and porosity. The performances of TiO2/PES membranes of 0 wt.%, 1 wt.%, 3 wt.%, and 5 wt.% were evaluated via a cross-flow filtration system regarding anti-fouling and self-cleaning effects. After that, all the membranes were irradiated under UV for either 2, 10, or 20 min. A TiO2/PES mixed matrix membrane of 3 wt.% was proved to have the best anti-fouling and self-cleaning effect with improved hydrophilicity. The optimum duration for UV irradiation of the TiO2/PES mixed matrix membrane was 20 min. Furthermore, the fouling behaviour of mixed matrix membranes was fitted to the intermediate blocking model. Adding TiO2 photocatalyst into the PES membrane enhanced the anti-fouling and self-cleaning properties.

2.
Membranes (Basel) ; 13(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36837677

RESUMO

The severe water pollution from effluent dyes threatens human health. This study created pH-magnetic-photocatalytic polymer microspheres to conveniently separate the photocatalyst nanoparticles from the treated water by applying an external magnetic field. While fabricating magnetic nanoparticles' (MNPs) microspheres, incorporating 0.5 wt.% iron oxide (Fe3O4) showed the best magnetophoretic separation ability, as all the MNPs microspheres were attracted toward the external magnet. Subsequently, hybrid organic-inorganic polyoxometalates (HPOM), a self-synthesized photocatalyst, were linked with the functionalized magnetic nanoparticles (f-MNPs) to prepare augmented magnetic-photocatalytic microspheres. The photodegradation dye removal efficiency of the augmented magnetic-photocatalytic microspheres (f-MNPs-HPOM) was then compared with that of the commercial titanium dioxide (TiO2) photocatalyst (f-MNPs-TiO2). Results showed that f-MNPs-HPOM microspheres with 74 ± 0.7% photocatalytic removal efficiency better degraded methylene orange (MO) than f-MNPs-TiO2 (70 ± 0.8%) at an unadjusted pH under UV-light irradiation for 90 min. The excellent performance was mainly attributed to the lower band-gap energy of HPOM (2.65 eV), which required lower energy to be photoactivated under UV light. The f-MNPs-HPOM microspheres demonstrated excellent reusability and stability in the photo-decolorization of MO, as the microspheres retained nearly the same removal percentage throughout the three continuous cycles. The degradation rate was also found to follow the pseudo-first-order kinetics. Furthermore, f-MNPs-HPOM microspheres were pH-responsive in the photodegradation of MO and methylene blue (MB) at pH 3 (acidic) and pH 9 (alkaline). Overall, it was demonstrated that using HPOM photocatalysts in the preparation of magnetic-photocatalytic microspheres resulted in better dye degradation than TiO2 photocatalysts.

3.
Environ Sci Pollut Res Int ; 30(14): 40242-40259, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36604398

RESUMO

In view of the simple and rapid conveniency of magnetic separation, magnetic nanocomposites had notably gained attention from researchers for environmental field applications. In this work, carboxylated magnetic multi-walled carbon nanotubes (c-MMWCNTs) and novel sulfonated MMWCNTs (s-MMWCNTs) were synthesized by a facile solvent-free direct doping method. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, vibrating sample magnetometer, and point of zero charge analyses confirmed the successful doping of the Fe3O4 nanoparticles into the functionalized MWCNTs to form MMWCNTs. Besides, the bonding stabilities of both c-MMWCNTs and s-MMWCNTs were compared, and results showed that s-MMWCNTs possessed more substantial bonding stability than that of c-MMWCNTs with significantly less leaching amount of Fe3O4. The adsorption capacity of s-MMWCNTs was higher than that of c-MMWCNTs owing to the stronger electronegativity sulfonic group in s-MMWCNTs. Moreover, the reusability experiments proved that the adsorbent remained consistently excellent MB removal efficiency (R > 94%) even reused for twelve cycles of batch adsorption. The finding of the present work highlights the simple fabrication of novel s-MMWCNTs and its potential to be served as a promising and sustainable adsorbent for water remediation owing to its enhanced bonding stability, high adsorption performance, magnetic separability, and supreme recyclability.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Água , Adsorção , Nanotubos de Carbono/química , Magnetismo , Fenômenos Magnéticos , Poluentes Químicos da Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética
4.
Trop Life Sci Res ; 30(1): 123-147, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30847037

RESUMO

This study reports the biodiversity of thermophilic cellulolytic bacterial strains that present in the north Malaysian mangrove ecosystem. Soil samples were collected at the four most northern state of Malaysia (Perak, Pulau Pinang, Kedah and Perlis). The samples obtained were first enriched in nutrient broth at 45°C and 55°C prior culturing in the carboxymethylcellulose (CMC) agar medium. Repeated streaking was performed on the CMC agar to obtain a pure culture of each isolate prior subjecting it to hydrolysis capacity testing. The isolates that showing the cellulolytic zone (halozone) were sent for 16S rRNA sequencing. Total seven isolates (two from Perak, three from Kedah, another two were from Perlis and Penang each) showed halozone. The isolate (KFX-40) from Kedah exhibited highest halozone of 3.42 ± 0.58, meanwhile, the one obtained from Perak (AFZ-0) showed the lowest hydrolysis capacity (2.61 ± 0.10). Based on 16S rRNA sequencing results, 5 isolates (AFY-40, AFZ-0, KFX-40, RFY-20, and PFX-40) were determined to be Anoxybacillus sp. The other two isolates were identified as Bacillus subtilis (KFY-40) and Paenibacillus dendritiformis (KFX-0). Based on growth curve, doubling time of Anoxybacillus sp. UniMAP-KB06 was calculated to be 32.3 min. Optimal cellulose hydrolysis temperature and pH of this strain were determined to be 55°C and 6.0 respectively. Addition of Mg2+ and Ca2+ were found to enhance the cellulase activity while Fe3+ acted as an enzyme inhibitor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...