Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (115)2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27684325

RESUMO

The work is based on a reported study which investigates the processability of canola oil (bio-feed) in the presence of bitumen-derived heavy gas oil (HGO) for production of transportation fuels through a fluid catalytic cracking (FCC) route. Cracking experiments are performed with a fully automated reaction unit at a fixed weight hourly space velocity (WHSV) of 8 hr(-1), 490-530 °C, and catalyst/oil ratios of 4-12 g/g. When a feed is in contact with catalyst in the fluid-bed reactor, cracking takes place generating gaseous, liquid, and solid products. The vapor produced is condensed and collected in a liquid receiver at -15 °C. The non-condensable effluent is first directed to a vessel and is sent, after homogenization, to an on-line gas chromatograph (GC) for refinery gas analysis. The coke deposited on the catalyst is determined in situ by burning the spent catalyst in air at high temperatures. Levels of CO2 are measured quantitatively via an infrared (IR) cell, and are converted to coke yield. Liquid samples in the receivers are analyzed by GC for simulated distillation to determine the amounts in different boiling ranges, i.e., IBP-221 °C (gasoline), 221-343 °C (light cycle oil), and 343 °C+ (heavy cycle oil). Cracking of a feed containing canola oil generates water, which appears at the bottom of a liquid receiver and on its inner wall. Recovery of water on the wall is achieved through washing with methanol followed by Karl Fischer titration for water content. Basic results reported include conversion (the portion of the feed converted to gas and liquid product with a boiling point below 221 °C, coke, and water, if present) and yields of dry gas (H2-C2's, CO, and CO2), liquefied petroleum gas (C3-C4), gasoline, light cycle oil, heavy cycle oil, coke, and water, if present.


Assuntos
Biocombustíveis , Catálise , Automação , Dióxido de Carbono , Gases , Temperatura Alta , Resíduos Industriais , Óleos de Plantas , Óleo de Brassica napus , Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-19227061

RESUMO

Microwave energy is an alternative energy source that is receiving a considerable amount of attention from researchers for a wide spectrum of applications. The fundamentally different method of transferring energy from the source to the sample is the main benefit of utilizing microwave energy; by directly delivering energy to microwave-absorbing materials, conventional issues such as long heating periods, thermal gradients, and energy lost to the system environment can be minimized or avoided. Furthermore, the penetrating capacity of microwave allows volumetric heating of samples. These attributes of microwave energy make utilizing it very attractive for industrial applications as an alternative to conventional processing methods. The reality is otherwise however, and limited literature is found in any given area of work. Despite the lack of focus, in most published cases, the utilization of microwave energy has produced improved results compared to conventional methods with reduced heating times or reaction temperatures. This review provides a general overview of reported applications of microwave energy in the open literature. It also attempts to summarize the results obtained for various common uses and highlights some applications that have not gathered as much attention as anticipated.


Assuntos
Conservação de Alimentos/métodos , Micro-Ondas , Catálise , Cerâmica/química , Culinária/métodos , Dessecação/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...