Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(7): e2207196, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36394114

RESUMO

In the realm of 2D layered materials, the monoelemental group 14 Xene, germanene, as the germanium analog of graphene, has emerged as the next prospective candidate. Preceded by silicon, germanium is widely used in the semiconductor industry; thus, germanene is deemed compatible with existing semiconductor technologies. Germanene consists of mixed sp2 -sp3 -hybridized networks in a buckled hexagonal honeycomb structure. Chemical exfoliation of Zintl phases, such as CaGe2 , specifically the topotactical deintercalation in acidic media, removes the alkaline earth metal ions Ca2+ , giving rise to layered germanane (germanene with the Ge centers covalently saturated with terminal hydrogen atoms). Diverse variants of functionalized germananes (with covalent group(s) termination) can be obtained by varying the topotactical deintercalation precursors, elevating the game with limitless functionalization possibilities for customizable properties or new functionalities. The preparation of Zintl phases to the details of functionalized and modified germananes and their properties, and the additional exfoliation step to achieve mono- or few-layer germananes, are comprehensively covered. The progress and challenges of 2D functionalized germananes in optoelectronics, catalysis, energy conversion and storage, sensors, and biomedical areas are reviewed. This review provides insight into designing and exploring this class of atomically thin semiconductors in realizing future nanoarchitectonics.

2.
ACS Nano ; 15(7): 11681-11693, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34125532

RESUMO

Succeeding graphene, monoelemental two-dimensional (2D) materials such as germanene and silicene, coined as "Xenes", have attracted vast scientific and technological interests. Adding covalently bonded hydrogen on both sides of germanene leads to germanane (i.e., hydrogen-terminated germanene, GeH). Further, the covalent functionalization of germanane allows the tuning of its physical and chemical properties. Diverse variants of germananes have been synthesized, but current research is primarily focused on their fundamental properties. As a case in point, their applications as photo- and electrocatalysts in the field of modern energy conversion have not been explored. Here, we prepare 2D germanene-based materials, specifically germanane and germananes functionalized by various alkyl chains with different terminal groups-germanane with methyl, propyl, hydroxypropyl, and 2-(methoxycarbonyl)ethyl-and investigate their structural, morphological, optical, electronic, and electrochemical properties. The bond geometries of the functionalized structures, their formation energies, and band gap values are investigated by density functional theory calculations. The functionalized germananes are tested as photoelectrocatalysts in the hydrogen evolution reaction (HER) and photo-oxidation of water. The performance of the germananes is influenced by the functionalized groups, where the germanane with -CH2CH2CH2OH termination records the lowest HER overpotentials and with -H termination reaches the highest photocurrent densities for water oxidation over the entire visible spectral region. These positive findings serve as an overview of organic functionalization of 2D germananes that can be expanded to other "Xanes" for targeted tuning of the optical and electronic properties for photo- and electrochemical energy conversion applications.

3.
Nanoscale ; 13(10): 5324-5332, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33657197

RESUMO

Transition metal dichalcogenides (TMDs) have shown to be promising catalysts for the electrochemical hydrogen evolution reaction (HER) and 3D-printing enables fast prototyping and manufacturing of water splitting devices. However, the merging of TMDs with complex 3D-printed surfaces and nanostructures as well as their localized characterization remains challenging. In this work, electrodeposition of MoS2 and WS2 and their heterojunctions are used to modify thermally activated 3D-printed nanocarbon structures. Their electrochemical performance for the HER is investigated macroscopically by linear sweep voltammetry and microscopically by scanning electrochemical microscopy. This study demonstrates different local HER active sites of MoS2 and WS2 within the 3D-printed nanocarbon structure that are not solely located at the outer surface, but also in the interior up to ∼150 µm for MoS2 and ∼300 µm for WS2.

4.
Anal Chem ; 93(12): 5277-5283, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33729747

RESUMO

Three-dimensional (3D) printing technology has attracted great attention for prototyping different electrochemical sensor devices. However, chiral recognition remains a crucial challenge for electrochemical sensors with similar physicochemical properties such as enantiomers. In this work, a magnetic covalent organic framework (COF) and bovine serum albumin (BSA) (as the chiral surface) functionalized 3D-printed electrochemical chiral sensor is reported for the first time. The characterization of the chiral biomolecule-COF 3D-printed constructure was performed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDX). A tryptophan (Trp) enantiomer was chosen as the model chiral molecule to estimate the chiral recognition ability of the magnetic COF and BSA-based 3DE (Fe3O4@COF@BSA/3DE). We have demonstrated that the Fe3O4@COF@BSA/3DE exhibited excellent chiral recognition to l-Trp as compared to d-Trp. The chiral protein-COF sensing interface was used to determine the concentration of l-Trp in a racemic mixture of d-Trp and l-Trp. This strategy of on-demand fabrication of 3D-printed protein-COF-modified electrodes opens up new approaches for enantiomer recognition.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Técnicas Eletroquímicas , Eletrodos , Impressão Tridimensional
5.
ACS Nano ; 15(1): 686-697, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33411515

RESUMO

The advantages of three-dimensional (3D) printing technologies, such as rapid-prototyping and the freedom to customize electrodes in any design, have elevated the benchmark of conventional electrochemical studies. Furthermore, the 3D printed electrodes conveniently accommodate other active layers for diverse applications such as energy storage, catalysis, and sensors. Nevertheless, to enhance a complex 3D structure while preserving the fine morphology, conformal deposition by atomic layer deposition (ALD) technique is a powerful solution. Herein, we present the concept of coating Al2O3 by ALD with different thicknesses from 20 to 120 cycles on the 3D printed nanocarbon/PLA electrodes for the electrocatalytic oxidation of catechol as an important biomarker. Overall, 80 ALD cycle Al2O3 achieved an optimum thickness for catechol electrocatalysis. This is resonated with the enhanced adsorption of catechol at the electrode surface and efficient electron transfer, according to the two-proton, two-electron-transfer mechanism, as well as for the passivation of surface defects of the nanocarbon electrode. This work compellingly demonstrates the prospect of 3D printed electrodes modified by a functional layer utilizing a low-temperature ALD process that can be extended to other arbitrary surfaces.

6.
Chemistry ; 26(67): 15746-15753, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166037

RESUMO

Additive manufacturing or 3D-printing have become promising fabrication techniques in the field of electrochemical energy storage applications such as supercapacitors, and batteries. Of late, a commercially available graphene/polylactic acid (PLA) filament has been commonly used for Fused Deposition Modeling (FDM) 3D-printing in the fabrication of electrodes for supercapacitors and Li-ion batteries. This graphene/PLA filament contains metal-based impurities such as titanium oxide and iron oxide. In this study, we show a strong influence of inherent impurities in the graphene/PLA filament for supercapacitor applications. A 3D-printed electrode is prepared and subsequently thermally activated for electrochemical measurement. A deep insight has been taken to look into the pseudocapacitive contribution from the metal-based impurities which significantly enhanced the overall capacitance of the 3D-printed graphene/PLA electrode. A systematic approach has been shown to remove the impurities from the printed electrodes. This has a broad implication on the interpretation of the capacitance of 3D-printed composites.

7.
Nanoscale ; 12(38): 19673-19680, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-32966493

RESUMO

3D-printing is an emerging technology that can be used for the fast prototyping and decentralised production of objects with complex geometries. Concretely, carbon-based 3D-printed electrodes have emerged as promising components for electrochemical capacitors. However, such electrodes usually require some post-treatments to be electrically active. Herein, 3D-printed nanocomposite electrodes made from a polylactic acid/nanocarbon filament have been characterised through different carbonisation temperatures in order to improve the conductivity of the electrodes via insulating polymer removal. Importantly, the carbonisation temperature has demonstrated to be a key parameter to tailor the capacitive behaviour of the resulting electrodes. Accordingly, this work opens new insights in advanced 3D-printed carbon-based electrodes employing thermal activation.

8.
ACS Appl Mater Interfaces ; 12(29): 33386-33396, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32589393

RESUMO

The continuous emission of nitrous oxides contributes to the overall air pollution and deterioration of air quality. In particular, an effective NO2 sensor capable of low concentration detection for continuous monitoring is demanded for safety, health, and wellbeing. The sensing performance of a metal oxide-based sensor is predominantly influenced by the availability of surface area for O2 adsorption and desorption, efficient charge transport, and size or thickness of the sensing layer. In this study, we utilized anodic one-dimensional (1D) TiO2 nanotube layers of 5 µm thick which offer large surface area and unidirectional electron transport pathway as a platform to accommodate thin SnO2 coatings as a sensing layer. Conformal and homogeneous SnO2 coatings across the entire inner and outer TiO2 nanotubes were achieved by atomic layer deposition with a controlled thickness of 4, 8, and 16 nm. The SnO2-coated TiO2 nanotube layers attained a higher sensing response than a reference Figaro SnO2 sensor. Specifically, the 8 nm SnO2-coated TiO2 nanotube layer has recorded up to ten-fold enhancement in response as compared to the blank nanotubes for the detection of 1 ppm NO2 at an operating temperature of 300 °C with 0.5 V applied bias. This is attributed to the SnO2/TiO2 heterojunction effect and controlled SnO2 thickness within the range of the Debye length. We demonstrated in this work, a tailored large surface area platform based on 1D nanotubes with thin active coatings as an efficient approach for sensing applications and beyond.

9.
Nanomaterials (Basel) ; 10(5)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429573

RESUMO

TiO2 nanotube layers (TNTs) decorated with Al2O3/MoS2/Al2O3 are investigated as a negative electrode for 3D Li-ion microbatteries. Homogenous nanosheets decoration of MoS2, sandwiched between Al2O3 coatings within self-supporting TNTs was carried out using atomic layer deposition (ALD) process. The structure, morphology, and electrochemical performance of the Al2O3/MoS2/Al2O3-decorated TNTs were studied using scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and chronopotentiometry. Al2O3/MoS2/Al2O3-decorated TNTs deliver an areal capacity almost three times higher than that obtained for MoS2-decorated TNTs and as-prepared TNTs after 100 cycles at 1C. Moreover, stable and high discharge capacity (414 µAh cm-2) has been obtained after 200 cycles even at very fast kinetics (3C).

10.
ACS Appl Bio Mater ; 3(9): 6447-6456, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021776

RESUMO

The present work exploits Ti sheets and TiO2 nanotube (TNT) layers and their surface modifications for the proliferation of different cells. Ti sheets with a native oxide layer, Ti sheets with a crystalline thermal oxide layer, and two kinds of TNT layers (prepared via electrochemical anodization) with a defined inner diameter of 12 and 15 nm were used as substrates. A part of the Ti sheets and the TNT layers was additionally coated by thin TiO2 coatings using atomic layer deposition (ALD). An increase in cell growth of WI-38 fibroblasts (>50%), MG-63 osteoblasts (>30%), and SH-SY5Y neuroblasts (>30%) was observed for all materials coated by five cycles ALD compared to their uncoated counterparts. The additional ALD TiO2 coatings changed the surface composition of all materials but preserved their original structure and protected them from unwanted crystallization and shape changes. The presented approach of mild surface modification by ALD has a significant effect on the materials' biocompatibility and is promising toward application in implant materials.

11.
Front Chem ; 7: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775363

RESUMO

The present work presents a strategy to stabilize amorphous anodic self-organized TiO2 nanotube layers against morphological changes and crystallization upon extensive water soaking. The growth of needle-like nanoparticles was observed on the outer and inner walls of amorphous nanotube layers after extensive water soakings, in line with the literature on water annealing. In contrary, when TiO2 nanotube layers uniformly coated by thin TiO2 using atomic layer deposition (ALD) were soaked in water, the growth rates of needle-like nanoparticles were substantially reduced. We investigated the soaking effects of ALD TiO2 coatings with different thicknesses and deposition temperatures. Sufficiently thick TiO2 coatings (≈8.4 nm) deposited at different ALD process temperatures efficiently hamper the reactions between water and F- ions, maintain the amorphous state, and preserve the original tubular morphology. This work demonstrates the possibility of having robust amorphous 1D TiO2 nanotube layers that are very stable in water. This is very practical for diverse biomedical applications that are accompanied by extensive contact with an aqueous environment.

12.
ChemistryOpen ; 6(4): 480-483, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28794939

RESUMO

Ideally hexagonally ordered TiO2 nanotube layers were produced through the optimized anodization of Ti substrates. The Ti substrates were firstly covered with a TiN protecting layer prepared through atomic layer deposition (ALD). Pre-texturing of the TiN-protected Ti substrate on an area of 20×20 µm2 was carried out by focused ion beam (FIB) milling, yielding uniform nanoholes with a hexagonal arrangement throughout the TiN layer with three different interpore distances. The subsequent anodic nanotube growth using ethylene-glycol-based electrolyte followed the pre-textured nanoholes, resulting in perfectly ordered nanotube layers (resembling honeycomb porous anodic alumina) without any point defects and with a thickness of approximately 2 µm over the whole area of the pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...