Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Chem ; 11: 1195883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332894

RESUMO

Introduction: The plant Patrinia villosa Juss. (PV) has long been used as a medicinal herb for treating intestinal disorders. Pharmacological activities such as anti-oxidation, anti-inflammation, and anti-cancer effects of compounds isolated from PV have been reported, but these bioactive compounds were not derived from PV water extract (PVW). Therefore, in the present study, we aimed to identify the active component(s) of PVW which exhibit inhibitory activities in colon cancer cells viability and migration. Methods: Human colon cancer HCT116 cells were treated with the isolated compounds of PVW and then subjected to MTT and transwell migration assays. Results: Our results showed that an active compound in PVW, 8,9-didehydro-7-hydroxydolichodial (DHD) inhibited cell viability of HCT116 cells, with IC50 value at 6.1 ± 2.2 µM. Interestingly, DHD was not detected in the herbal material of PV. Further investigation revealed that DHD is in fact a heat-generated compound derived from a natural compound present in PV, namely valerosidate. Valerosidate also reduced cell viability in HCT116 cells, with IC50 value at 22.2 ± 1.1 µM. Moreover, both DHD (2.75 µM) and valerosidate (10.81 µM) suppressed cell migration in HCT116 cells, with inhibitory rates at 74.8% and 74.6%, respectively. In addition, western blot results showed that DHD (5.5 µM) could significantly increase p53 expression by 34.8% and PTEN expression by 13.9%, while valerosidate (21.6 µM) could increase expressions of p53 and PTEN by 26.1% and 34.6%, respectively in HCT116 cells after 48 h treatment. Discussion: Taken together, this is the first report that a naturally-occurring valerosidate present in PV could actually transform to DHD by thermal hydrolysis, and both compounds exhibited inhibitory effects on cell viability and migration in HCT116 cells via increasing the expressions of tumor suppressors (p53 and PTEN). Our findings demonstrated that valerosidate is present in raw herb PV but not in PVW, while DHD is present in PVW rather than in raw herb PV. This difference in chemical profiles of raw herb and boiled water extract of PV may affect the anti-cancer activity, and hence further investigations are warranted.

2.
Comput Struct Biotechnol J ; 21: 1584-1592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874156

RESUMO

Expansions of short tandem repeats (STRs) are associated with approximately 50 human neurodegenerative diseases. These pathogenic STRs are prone to form non-B DNA structure, which has been considered as one of the causative factors for repeat expansions. Minidumbbell (MDB) is a relatively new type of non-B DNA structure formed by pyrimidine-rich STRs. An MDB is composed of two tetraloops or pentaloops, exhibiting a highly compact conformation with extensive loop-loop interactions. The MDB structures have been found to form in CCTG tetranucleotide repeats associated with myotonic dystrophy type 2, ATTCT pentanucleotide repeats associated with spinocerebellar ataxia type 10, and the recently discovered ATTTT/ATTTC repeats associated with spinocerebellar ataxia type 37 and familial adult myoclonic epilepsy. In this review, we first introduce the structures and conformational dynamics of MDBs with a focus on the high-resolution structural information determined by nuclear magnetic resonance spectroscopy. Then we discuss the effects of sequence context, chemical environment, and nucleobase modification on the structure and thermostability of MDBs. Finally, we provide perspectives on further explorations of sequence criteria and biological functions of MDBs.

3.
FEBS Lett ; 596(6): 826-840, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060128

RESUMO

Minidumbbell (MDB) is a noncanonical DNA structure found to form in several pyrimidine-rich short tandem repeats associated with neurodegenerative diseases. The most recently reported MDB contains two pentaloops formed by ATTCT repeats. Here, we studied the effects of a purine residue and a backbone discontinuous site on the structure and thermal stability of MDBs containing two pentaloops. It was found that a purine as the fourth loop residue improved the thermal stability of MDBs containing two regular pentaloops, while a backbone discontinuous site between the third and fourth, or between the fourth and fifth loop residues enhanced the thermal stability of MDBs containing a regular and a quasi pentaloops. The results of this study provide new insights into the sequence criteria and structural basis of MDBs.


Assuntos
DNA , Purinas , DNA/química , DNA/genética , Conformação de Ácido Nucleico
4.
J Phys Chem B ; 124(25): 5131-5138, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32484672

RESUMO

Minidumbbell (MDB) is a newly discovered DNA structure formed by native sequences, which serves as a possible structural intermediate causing repeat expansion mutations in the genome and also a functional structural motif in constructing DNA-based molecular switches. Until now, all the reported MDBs containing two adjacent type II tetraloops were formed by pyrimidine-rich sequences 5'-YYYR YYYR-3' (Y and R represent pyrimidine and purine, respectively), wherein the second and sixth residues folded into the minor groove and interacted with each other. In this study, we have conducted a high-resolution nuclear magnetic resonance (NMR) spectroscopic investigation on alternative MDB-forming sequences and discovered that an MDB could also be formed stably with a purine in the minor groove, which has never been observed in any previously reported DNA type II tetraloops. Our refined NMR solution structures of the two MDBs formed by 5'-CTTG CATG-3' and 5'-CTTG CGTG-3' reveal that the sixth purine residue was driven into the minor groove via base-base stacking with the second thymine residue and adenine stacked better than guanine. The results of our present research work expand the sequence criteria for the formation of MDBs and shed light to explore the significance of MDBs.


Assuntos
DNA , Purinas , Sequência de Bases , Conformação de Ácido Nucleico , Timina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA