Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 112(1): 1-7, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28076467

RESUMO

Insects are considered pests globally, implicated in the destruction of agricultural fields and transmission of pathogens that cause deadly human diseases, such as dengue, Zika and malaria. The diversity of the insecticide arsenal has remained stagnant for decades, but the recent rise of insecticide resistance fueled the discovery of novel modes of action, and the power of genomics has reinvigorated this search. This review discusses the importance of comparative and functional insect genomics in the identification of potential gene targets for an insecticidal mode of action with low off-target toxicity. Due to the global participation in the sequencing and annotation of insect genomes, the targeting of specific genes with molecular tools like RNAi and CRISPR/Cas9 for genome engineering and consequent functional identification and validation has become more efficient. While there are multiple avenues to explore for insecticidal candidates, this review identifies G-protein coupled receptors as attractive targets, and hones in on the octopamine and dopamine receptors due to their potential.


Assuntos
Marcação de Genes/métodos , Genoma de Inseto , Insetos , Inseticidas , Receptores Acoplados a Proteínas G/genética , Animais , Controle de Insetos/métodos , Resistência a Inseticidas/genética , Interferência de RNA/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo
2.
Mem. Inst. Oswaldo Cruz ; 112(1): 1-7, Jan. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-841758

RESUMO

Insects are considered pests globally, implicated in the destruction of agricultural fields and transmission of pathogens that cause deadly human diseases, such as dengue, Zika and malaria. The diversity of the insecticide arsenal has remained stagnant for decades, but the recent rise of insecticide resistance fueled the discovery of novel modes of action, and the power of genomics has reinvigorated this search. This review discusses the importance of comparative and functional insect genomics in the identification of potential gene targets for an insecticidal mode of action with low off-target toxicity. Due to the global participation in the sequencing and annotation of insect genomes, the targeting of specific genes with molecular tools like RNAi and CRISPR/Cas9 for genome engineering and consequent functional identification and validation has become more efficient. While there are multiple avenues to explore for insecticidal candidates, this review identifies G-protein coupled receptors as attractive targets, and hones in on the octopamine and dopamine receptors due to their potential.


Assuntos
Animais , Marcação de Genes/métodos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Resistência a Inseticidas , Controle de Insetos/métodos , Interferência de RNA , Genoma de Inseto , Inseticidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA