Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 2): 127861, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939761

RESUMO

Pseudomonas aeruginosa, an increasingly common competitive and biofilm organism in healthcare infection with sophisticated, interlinked and hierarchic quorum systems (Las, Rhl, PQS, and IQS), creates the greatest threats to the medical industry and has rendered prevailing chemotherapy medications ineffective. The rise of multidrug resistance has evolved into a concerning and potentially fatal occurrence for human life. P. aeruginosa biofilm development is assisted by exopolysaccharides, extracellular DNA, proteins, macromolecules, cellular signaling and interaction. Quorum sensing is a communication process between cells that involves autonomous inducers and regulators. Quorum-induced infectious agent biofilms and the synthesis of virulence factors have increased disease transmission, medication resistance, infection episodes, hospitalizations and mortality. Hence, quorum sensing may be a potential therapeutical target for bacterial illness, and developing quorum inhibitors as an anti-virulent tool could be a promising treatment strategy for existing antibiotics. Quorum quenching is a prevalent technique for treating infections caused by microbes because it diminishes microbial pathogenesis and increases microbe biofilm sensitivity to antibiotics, making it a potential candidate for drug development. This paper examines P. aeruginosa quorum sensing, the hierarchy of quorum sensing mechanism, quorum sensing inhibition and quorum sensing inhibitory agents as a drug development strategy to supplement traditional antibiotic strategies.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Humanos , Biofilmes , Transdução de Sinais , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo
2.
Mar Drugs ; 17(5)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058830

RESUMO

The secondary metabolite Tyrian purple, also known as shellfish purple and royal purple, is a dye with historical importance for humans. The biosynthetic origin of Tyrian purple in Muricidae molluscs is not currently known. A possible role for symbiotic bacteria in the production of tyrindoxyl sulphate, the precursor to Tyrian purple stored in the Australian species, Dicathais orbita, has been proposed. This study aimed to culture bacterial symbionts from the purple producing hypobranchial gland, and screen the isolates for bromoperoxidase genes using molecular methods. The ability of bromoperoxidase positive isolates to produce the brominated indole precursor to Tyrian purple was then established by extraction of the culture, and analysis by liquid chromatography-mass spectrometry (LC-MS). In total, 32 bacterial isolates were cultured from D. orbita hypobranchial glands, using marine agar, marine agar with hypobranchial gland aqueous extracts, blood agar, thiosulphate citrate bile salts sucrose agar, and cetrimide agar at pH 7.2. These included 26 Vibrio spp., two Bacillus spp., one Phaeobacter sp., one Shewanella sp., one Halobacillus sp. and one Pseudoalteromonas sp. The two Bacillus species were the only isolates found to have coding sequences for bromoperoxidase enzymes. LC-MS analysis of the supernatant and cell pellets from the bromoperoxidase producing Bacillus spp. cultured in tryptone broth, supplemented with KBr, confirmed their ability to produce the brominated precursor to Tyrian purple, tyrindoxyl sulphate. This study supports a potential role for symbiotic Bacillus spp. in the biosynthesis of Tyrian purple.


Assuntos
Bacillus/genética , Bactérias/genética , Gastrópodes/microbiologia , Peroxidases/genética , Animais , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Região Branquial/metabolismo , Região Branquial/microbiologia , Indóis/análise , Moluscos , Análise de Sequência de RNA , Simbiose
3.
Mar Drugs ; 14(7)2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27447649

RESUMO

Dicathais orbita is a mollusc of the Muricidae family and is well known for the production of the expensive dye Tyrian purple and its brominated precursors that have anticancer properties, in addition to choline esters with muscle-relaxing properties. However, the biosynthetic pathways that produce these secondary metabolites in D. orbita are not known. Illumina HiSeq 2000 transcriptome sequencing of hypobranchial glands, prostate glands, albumen glands, capsule glands, and mantle and foot tissues of D. orbita generated over 201 million high quality reads that were de novo assembled into 219,437 contigs. Annotation with reference to the Nr, Swiss-Prot and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases identified candidate-coding regions in 76,152 of these contigs, with transcripts for many enzymes in various metabolic pathways associated with secondary metabolite biosynthesis represented. This study revealed that D. orbita expresses a number of genes associated with indole, sulfur and histidine metabolism pathways that are relevant to Tyrian purple precursor biosynthesis, and many of which were not found in the fully annotated genomes of three other molluscs in the KEGG database. However, there were no matches to known bromoperoxidase enzymes within the D. orbita transcripts. These transcriptome data provide a significant molecular resource for gastropod research in general and Tyrian purple producing Muricidae in particular.


Assuntos
Vias Biossintéticas/genética , Colina/metabolismo , Ésteres/metabolismo , Gastrópodes/genética , Indóis/metabolismo , Moluscos/genética , Transcriptoma/genética , Animais , Austrália , Bases de Dados Genéticas , Gastrópodes/metabolismo , Anotação de Sequência Molecular/métodos , Moluscos/metabolismo , Peroxidases/metabolismo
4.
PLoS One ; 10(10): e0140725, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488885

RESUMO

Dicathais orbita is a marine mollusc recognised for the production of anticancer compounds that are precursors to Tyrian purple. This study aimed to assess the diversity and identity of bacteria associated with the Tyrian purple producing hypobranchial gland, in comparison with foot tissue, using a high-throughput sequencing approach. Taxonomic and phylogenetic analysis of variable region V1-V3 of 16S rRNA bacterial gene amplicons in QIIME and MEGAN were carried out. This analysis revealed a highly diverse bacterial assemblage associated with the hypobranchial gland and foot tissues of D. orbita. The dominant bacterial phylum in the 16S rRNA bacterial profiling data set was Proteobacteria followed by Bacteroidetes, Tenericutes and Spirochaetes. In comparison to the foot, the hypobranchial gland had significantly lower bacterial diversity and a different community composition, based on taxonomic assignment at the genus level. A higher abundance of indole producing Vibrio spp. and the presence of bacteria with brominating capabilities in the hypobranchial gland suggest bacteria have a potential role in biosynthesis of Tyrian purple in D. orbita.


Assuntos
Gastrópodes/microbiologia , Indóis/metabolismo , Microbiota/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Animais , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Sequência de Bases , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Análise de Sequência de DNA , Spirochaetales/genética , Spirochaetales/isolamento & purificação , Tenericutes/genética , Tenericutes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...